fusion-zauberstab/firmware/include/fft.h

76 lines
1.9 KiB
C++

#pragma once
#include <complex>
template <class T>
struct FFT
{
static void fft(std::complex<T> *samples, std::complex<T> *output, uint32_t N)
{
uint8_t log2n = (uint8_t)std::log2(N) + 0.5f;
std::complex<T> I(0.0, 1.0);
if (N == 1)
{
output[0] = samples[0];
return;
}
// shuffle array
for (int i = 0; i < N; i++)
{
output[i] = samples[FFT::bitReverse(i, log2n)];
}
for (int s = 1; s <= log2n; s++)
{
uint32_t m = 1 << s; // 2^s
std::complex<T> wm = std::exp(-2.0f * (T)M_PI * I / (std::complex<T>)m);
for (int k = 0; k < N; k += m)
{
std::complex<T> w = 1.f;
for (int j = 0; j < m / 2; j++)
{
std::complex<T> t = w * output[k + j + m / 2];
std::complex<T> u = output[k + j];
output[k + j] = u + t;
output[k + j + m / 2] = u - t;
w = w * wm;
}
}
}
}
static void rfft(std::complex<T> *input, std::complex<T> *output, uint32_t N)
{
std::complex<T> I(0.0, 1.0);
for (int i = 0; i < N / 2; i++)
{
input[i] = input[i] + I * input[i + N / 2];
}
FFT<T>::fft(input, output, N / 2);
for (int i = 0; i < N / 2; i++)
{
output[i] = (output[i] + std::conj(output[(N / 2) - i])) / 2.;
}
for (int i = N / 2; i < N; i++)
{
output[i] = -I * (output[i] - std::conj(output[(N / 2) - i])) / 2.;
}
}
private:
static unsigned int bitReverse(unsigned int x, int log2n)
{
int n = 0;
for (int i = 0; i < log2n; i++)
{
n <<= 1;
n |= (x & 1);
x >>= 1;
}
return n;
}
};