fusion-zauberstab/arduino_zauberstab/arduino_zauberstab.ino
2022-06-06 15:54:10 +02:00

216 lines
4.6 KiB
C++

#include <FastLED.h>
//lichterkette: PWM 2
//mikrofon: A1
#define LED_PIN 2
#define NUM_LEDS 240
#define SAMPLING_FREQUENCY_BP 40 // number of energy chunks per second
#define SAMPLING_FREQUENCY_CONTROL 1 // check number of times per second if the current band pass is the best one
#define Q 20. // quality factor of band pass filters
#define PI 3.1415926535897932384626433832795
#define n_BP 20 //number of band pass filters
CRGB leds[NUM_LEDS];
unsigned long sampling_period_bp = 1000000L/SAMPLING_FREQUENCY_BP;
unsigned long sampling_period_control = 1000000L/SAMPLING_FREQUENCY_CONTROL;
double energy = 0;
unsigned long last_us_bp = 0L;
unsigned long last_us_control = 0L;
float a0[n_BP];
float a1[n_BP];
float a2[n_BP];
float b0[n_BP];
//float b1[n_BP];
float b2[n_BP];
float a[n_BP];
float w0[n_BP];
float yy1[n_BP];
float yy2[n_BP];
float yy3[n_BP];
float yy4[n_BP];
float yy5[n_BP];
float yy6[n_BP];
float u1[n_BP];
float u2[n_BP];
float y[n_BP];
float y_fil[n_BP];
float angle;
float angle2;
double energy_fil = 800.;
float pos_target = NUM_LEDS/2;
float pos_target_filtered = NUM_LEDS/2;
int microphone_offset;
long initial_time;
int active = 15;
int candidate = 15;
int rounds = 0;
void setup() {
//Serial.begin(115200);
FastLED.addLeds<WS2812, LED_PIN, RGB>(leds, NUM_LEDS);
FastLED.setMaxPowerInVoltsAndMilliamps(5, 350);
for(int i = 0; i < NUM_LEDS; i++)
{ int brightness = get_value(i, pos_target_filtered);
leds[i].setRGB(brightness, brightness, brightness); }
FastLED.show();
long sumsamples = 0;
for(int j = 1; j<1000; j++)
{
int sample = analogRead(1);
sumsamples += sample;
delay(1);
if(j==500)
{
sumsamples = 0;
}
}
microphone_offset = sumsamples/500;
set_filter();
initial_time = micros();
}
void set_filter() {
for(int i = 0; i < n_BP; i++)
{
float frequency = 1.75+i*0.033;
w0[i] = 2.*PI*frequency/SAMPLING_FREQUENCY_BP;
a[i] = sin(w0[i]/(2.*Q));
b0[i] = a[i];
//b1[i] = 0;
b2[i] = -a[i];
a0[i] = 1.+a[i];
a1[i] = -2.*cos(w0[i]);
a2[i] = 1.-a[i];
}
}
int get_value(int pos, float pos0) {
if (abs(pos0-pos) > 7)
{ return 0; }
else
{ return (255-abs(pos0-pos)*35); }
}
void loop() {
int sample = int(analogRead(1) - microphone_offset);
energy += abs(sample)*abs(sample);
if (micros() - last_us_bp > sampling_period_bp)
{
last_us_bp += sampling_period_bp;
energy_fil += (energy - energy_fil) * 0.01;
//Serial.println(energy);
for(int i = 0; i < n_BP; i++)
{
y[i] = (b0[i]/a0[i])*energy + 0. + (b2[i]/a0[i])*u2[i] - (a1[i]/a0[i])*yy1[i] - (a2[i]/a0[i])*yy2[i];
u2[i] = u1[i];
u1[i] = energy;
yy6[i] = yy5[i];
yy5[i] = yy4[i];
yy4[i] = yy3[i];
yy3[i] = yy2[i];
yy2[i] = yy1[i];
yy1[i] = y[i];
y_fil[i] += (abs(y[i]) - y_fil[i]) * 0.005; //linie der scheitelpunkte
}
float delays = constrain( SAMPLING_FREQUENCY_BP * 0.25/(1.75+active*0.033) , 4., 6.);
float delayed = 0;
if (delays > 5)
{delayed = yy5[active]*(1-delays+5) + yy6[active]*(delays-5); }
else
{delayed = yy4[active]*(1-delays+4) + yy5[active]*(delays-4); }
angle = atan2(delayed , y[active]);
if (PI < abs(angle - angle2) && abs(angle - angle2) < 3*PI)
{ angle2 = angle + 2*PI; }
else
{ angle2 = angle; }
pos_target = map(angle2, -PI, 3*PI, -0.1*NUM_LEDS, NUM_LEDS*1.1);
if (pos_target > pos_target_filtered)
{ pos_target_filtered += (pos_target - pos_target_filtered)*0.5; }
else
{ pos_target_filtered = pos_target; }
energy = 0;
for(int i = 0; i < NUM_LEDS; i++)
{ int brightness = get_value(i, pos_target_filtered);
leds[i].setRGB(brightness, brightness, brightness); }
FastLED.show();
}
if (micros() - last_us_control > sampling_period_control)
{
last_us_control += sampling_period_control;
int argmax = -1;
float valuemax = 0;
for(int i = 0; i < n_BP; i++)
{
if(y_fil[i] > valuemax)
{
valuemax = y_fil[i];
argmax = i;
}
}
if(argmax > -1)
{
if(argmax == candidate)
{
rounds ++;
}
else
{
rounds = 0;
candidate = argmax;
}
if(rounds > 5)
{
rounds = 0;
active = candidate;
}
}
}
}