forked from buddhabrot/fusion-zauberstab
204 lines
5.1 KiB
C++
204 lines
5.1 KiB
C++
#include "zauberstab.h"
|
|
|
|
#define SAMPLING_FREQUENCY_BP 40 // number of energy chunks per second
|
|
#define SAMPLING_FREQUENCY_CONTROL 1 // check number of times per second if the current band pass is the best one
|
|
#define Q 20. // quality factor of band pass filters
|
|
#define PI 3.1415926535897932384626433832795
|
|
#define n_BP 30 //number of band pass filters
|
|
|
|
static unsigned long sampling_period_bp = 1000000L / SAMPLING_FREQUENCY_BP;
|
|
static unsigned long sampling_period_control = 1000000L / SAMPLING_FREQUENCY_CONTROL;
|
|
static double energy = 0;
|
|
static unsigned long last_us_bp = 0L;
|
|
static unsigned long last_us_control = 0L;
|
|
|
|
static float a0[n_BP];
|
|
static float a1[n_BP];
|
|
static float a2[n_BP];
|
|
static float b0[n_BP];
|
|
//static float b1[n_BP];
|
|
static float b2[n_BP];
|
|
|
|
static float a[n_BP];
|
|
static float w0[n_BP];
|
|
|
|
static float yy1[n_BP];
|
|
static float yy2[n_BP];
|
|
static float yy3[n_BP];
|
|
static float yy4[n_BP];
|
|
static float yy5[n_BP];
|
|
static float yy6[n_BP];
|
|
|
|
static float u1[n_BP];
|
|
static float u2[n_BP];
|
|
static float y[n_BP];
|
|
static float y_fil[n_BP];
|
|
|
|
static float angle;
|
|
static float angle2;
|
|
|
|
static double energy_fil = 800.;
|
|
|
|
static float pos_target = NUM_LEDS / 2;
|
|
static float pos_target_filtered = NUM_LEDS / 2;
|
|
|
|
static float microphone_offset = 675;
|
|
static long initial_time;
|
|
|
|
static int active = 15;
|
|
static int candidate = 15;
|
|
static int rounds = 0;
|
|
|
|
static int get_value(int pos, float pos0)
|
|
{
|
|
if (abs(pos0 - pos) > 20)
|
|
{
|
|
return 0;
|
|
}
|
|
else
|
|
{
|
|
return (40 - abs(pos0 - pos) * 2);
|
|
}
|
|
}
|
|
|
|
static void set_filter()
|
|
{
|
|
for (int i = 0; i < n_BP; i++)
|
|
{
|
|
float frequency = 1.75 + i * (2.4 - 1.75) / n_BP;
|
|
w0[i] = 2. * PI * frequency / SAMPLING_FREQUENCY_BP;
|
|
a[i] = sin(w0[i] / (2. * Q));
|
|
b0[i] = a[i];
|
|
//b1[i] = 0;
|
|
b2[i] = -a[i];
|
|
a0[i] = 1. + a[i];
|
|
a1[i] = -2. * cos(w0[i]);
|
|
a2[i] = 1. - a[i];
|
|
}
|
|
}
|
|
|
|
void setup()
|
|
{
|
|
zauberstab_init();
|
|
Serial.begin(115200);
|
|
set_filter();
|
|
initial_time = micros();
|
|
}
|
|
void loop()
|
|
{
|
|
|
|
int sample = int(analogRead(MIC_PIN) - microphone_offset);
|
|
energy += abs(sample) * abs(sample);
|
|
|
|
if (micros() - last_us_bp > sampling_period_bp)
|
|
{
|
|
|
|
Serial.println(sample);
|
|
|
|
microphone_offset += (analogRead(MIC_PIN) - microphone_offset) * 0.001;
|
|
|
|
//Serial.println(microphone_offset);
|
|
|
|
last_us_bp += sampling_period_bp;
|
|
energy_fil += (energy - energy_fil) * 0.01;
|
|
//Serial.println(energy);
|
|
for (int i = 0; i < n_BP; i++)
|
|
{
|
|
y[i] = (b0[i] / a0[i]) * energy + 0. + (b2[i] / a0[i]) * u2[i] - (a1[i] / a0[i]) * yy1[i] - (a2[i] / a0[i]) * yy2[i];
|
|
u2[i] = u1[i];
|
|
u1[i] = energy;
|
|
yy6[i] = yy5[i];
|
|
yy5[i] = yy4[i];
|
|
yy4[i] = yy3[i];
|
|
yy3[i] = yy2[i];
|
|
yy2[i] = yy1[i];
|
|
yy1[i] = y[i];
|
|
y_fil[i] += (abs(y[i]) - y_fil[i]) * 0.005; //linie der scheitelpunkte
|
|
}
|
|
|
|
float delays = constrain(SAMPLING_FREQUENCY_BP * 0.25 / (1.75 + active * (2.4 - 1.75) / n_BP), 4., 6.);
|
|
|
|
float delayed = 0;
|
|
if (delays > 5)
|
|
{
|
|
delayed = yy5[active] * (1 - delays + 5) + yy6[active] * (delays - 5);
|
|
}
|
|
else
|
|
{
|
|
delayed = yy4[active] * (1 - delays + 4) + yy5[active] * (delays - 4);
|
|
}
|
|
|
|
angle = atan2(delayed, y[active]);
|
|
|
|
if (PI < abs(angle - angle2) && abs(angle - angle2) < 3 * PI)
|
|
{
|
|
angle2 = angle + 2 * PI;
|
|
}
|
|
else
|
|
{
|
|
angle2 = angle;
|
|
}
|
|
|
|
pos_target = map(angle2, -PI, 3 * PI, -0.3 * NUM_LEDS, NUM_LEDS * 1.5);
|
|
|
|
if (pos_target > pos_target_filtered)
|
|
{
|
|
pos_target_filtered += (pos_target - pos_target_filtered) * 0.35;
|
|
}
|
|
else
|
|
{
|
|
pos_target_filtered = pos_target;
|
|
}
|
|
|
|
// Serial.print(y_fil[active]);
|
|
// Serial.print(",");
|
|
// Serial.println(y[active]);
|
|
|
|
energy = 0;
|
|
|
|
for (int i = 0; i < NUM_LEDS; i++)
|
|
{
|
|
int brightness = get_value(i, pos_target_filtered);
|
|
if (brightness >= 1) {
|
|
brightness = 10;
|
|
}
|
|
//leds[i].setRGB(brightness, brightness, brightness);
|
|
leds[i].setHSV(160, (rounds == 6) ? 0xFF : 0, brightness);
|
|
}
|
|
FastLED.show();
|
|
}
|
|
|
|
if (micros() - last_us_control > sampling_period_control)
|
|
{
|
|
last_us_control += sampling_period_control;
|
|
int argmax = -1;
|
|
float valuemax = 0;
|
|
for (int i = 0; i < n_BP; i++)
|
|
{
|
|
if (y_fil[i] > valuemax)
|
|
{
|
|
valuemax = y_fil[i];
|
|
argmax = i;
|
|
}
|
|
}
|
|
|
|
if (argmax > -1)
|
|
{
|
|
if (argmax == candidate)
|
|
{
|
|
rounds++;
|
|
}
|
|
else
|
|
{
|
|
rounds = 0;
|
|
candidate = argmax;
|
|
}
|
|
if (rounds > 6)
|
|
{
|
|
rounds = 0;
|
|
active = candidate;
|
|
}
|
|
}
|
|
}
|
|
}
|