2016-03-25 07:19:46 +01:00
/**
2016-03-24 19:01:20 +01:00
* Marlin 3 D Printer Firmware
* Copyright ( C ) 2016 MarlinFirmware [ https : //github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl .
* Copyright ( C ) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software : you can redistribute it and / or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation , either version 3 of the License , or
* ( at your option ) any later version .
*
* This program is distributed in the hope that it will be useful ,
* but WITHOUT ANY WARRANTY ; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE . See the
* GNU General Public License for more details .
*
* You should have received a copy of the GNU General Public License
* along with this program . If not , see < http : //www.gnu.org/licenses/>.
*
*/
2015-04-27 03:44:01 +02:00
/**
2016-05-04 02:00:28 +02:00
* planner . cpp
2015-08-11 18:38:26 +02:00
*
2016-05-04 02:00:28 +02:00
* Buffer movement commands and manage the acceleration profile plan
2015-04-27 03:44:01 +02:00
*
2016-05-04 02:00:28 +02:00
* Derived from Grbl
* Copyright ( c ) 2009 - 2011 Simen Svale Skogsrud
2015-04-27 03:44:01 +02:00
*
* The ring buffer implementation gleaned from the wiring_serial library by David A . Mellis .
*
*
* Reasoning behind the mathematics in this module ( in the key of ' Mathematica ' ) :
*
* s = = speed , a = = acceleration , t = = time , d = = distance
*
* Basic definitions :
* Speed [ s_ , a_ , t_ ] : = s + ( a * t )
* Travel [ s_ , a_ , t_ ] : = Integrate [ Speed [ s , a , t ] , t ]
*
* Distance to reach a specific speed with a constant acceleration :
* Solve [ { Speed [ s , a , t ] = = m , Travel [ s , a , t ] = = d } , d , t ]
* d - > ( m ^ 2 - s ^ 2 ) / ( 2 a ) - - > estimate_acceleration_distance ( )
*
* Speed after a given distance of travel with constant acceleration :
* Solve [ { Speed [ s , a , t ] = = m , Travel [ s , a , t ] = = d } , m , t ]
* m - > Sqrt [ 2 a d + s ^ 2 ]
*
* DestinationSpeed [ s_ , a_ , d_ ] : = Sqrt [ 2 a d + s ^ 2 ]
*
* When to start braking ( di ) to reach a specified destination speed ( s2 ) after accelerating
* from initial speed s1 without ever stopping at a plateau :
* Solve [ { DestinationSpeed [ s1 , a , di ] = = DestinationSpeed [ s2 , a , d - di ] } , di ]
* di - > ( 2 a d - s1 ^ 2 + s2 ^ 2 ) / ( 4 a ) - - > intersection_distance ( )
*
* IntersectionDistance [ s1_ , s2_ , a_ , d_ ] : = ( 2 a d - s1 ^ 2 + s2 ^ 2 ) / ( 4 a )
*
2012-06-11 17:33:42 +02:00
*/
2011-11-15 22:50:43 +01:00
# include "planner.h"
# include "stepper.h"
# include "temperature.h"
# include "ultralcd.h"
2012-03-03 16:51:47 +01:00
# include "language.h"
2018-03-14 06:57:08 +01:00
# include "parser.h"
2011-11-15 22:50:43 +01:00
2016-08-03 04:36:58 +02:00
# include "Marlin.h"
2015-07-31 07:30:29 +02:00
# if ENABLED(MESH_BED_LEVELING)
2015-03-15 10:43:26 +01:00
# include "mesh_bed_leveling.h"
2018-02-26 04:34:56 +01:00
# elif ENABLED(AUTO_BED_LEVELING_UBL)
# include "ubl.h"
2015-04-13 03:07:08 +02:00
# endif
2015-03-15 10:43:26 +01:00
2017-02-20 22:07:23 +01:00
# if ENABLED(AUTO_POWER_CONTROL)
# include "power.h"
# endif
2016-04-28 03:06:32 +02:00
Planner planner ;
2013-09-29 18:20:06 +02:00
2016-05-26 20:22:51 +02:00
// public:
/**
* A ring buffer of moves described in steps
*/
block_t Planner : : block_buffer [ BLOCK_BUFFER_SIZE ] ;
2018-04-14 04:59:09 +02:00
volatile uint8_t Planner : : block_buffer_head , // Index of the next block to be pushed
Planner : : block_buffer_tail ;
2016-05-26 20:22:51 +02:00
2016-12-04 05:02:27 +01:00
float Planner : : max_feedrate_mm_s [ XYZE_N ] , // Max speeds in mm per second
Planner : : axis_steps_per_mm [ XYZE_N ] ,
Planner : : steps_to_mm [ XYZE_N ] ;
2016-07-24 04:49:13 +02:00
2016-12-04 05:02:27 +01:00
# if ENABLED(DISTINCT_E_FACTORS)
uint8_t Planner : : last_extruder = 0 ; // Respond to extruder change
# endif
2017-11-10 09:38:53 +01:00
int16_t Planner : : flow_percentage [ EXTRUDERS ] = ARRAY_BY_EXTRUDERS1 ( 100 ) ; // Extrusion factor for each extruder
2017-12-27 02:39:39 +01:00
float Planner : : e_factor [ EXTRUDERS ] = ARRAY_BY_EXTRUDERS1 ( 1.0 ) ; // The flow percentage and volumetric multiplier combine to scale E movement
2017-12-20 03:33:41 +01:00
# if DISABLED(NO_VOLUMETRICS)
float Planner : : filament_size [ EXTRUDERS ] , // diameter of filament (in millimeters), typically around 1.75 or 2.85, 0 disables the volumetric calculations for the extruder
Planner : : volumetric_area_nominal = CIRCLE_AREA ( ( DEFAULT_NOMINAL_FILAMENT_DIA ) * 0.5 ) , // Nominal cross-sectional area
Planner : : volumetric_multiplier [ EXTRUDERS ] ; // Reciprocal of cross-sectional area of filament (in mm^2). Pre-calculated to reduce computation in the planner
# endif
2017-11-10 09:38:53 +01:00
2016-12-04 05:02:27 +01:00
uint32_t Planner : : max_acceleration_steps_per_s2 [ XYZE_N ] ,
Planner : : max_acceleration_mm_per_s2 [ XYZE_N ] ; // Use M201 to override by software
2016-05-26 20:22:51 +02:00
2017-10-14 22:47:53 +02:00
uint32_t Planner : : min_segment_time_us ;
2017-07-18 10:17:50 +02:00
// Initialized by settings.load()
2016-07-24 04:49:13 +02:00
float Planner : : min_feedrate_mm_s ,
Planner : : acceleration , // Normal acceleration mm/s^2 DEFAULT ACCELERATION for all printing moves. M204 SXXXX
Planner : : retract_acceleration , // Retract acceleration mm/s^2 filament pull-back and push-forward while standing still in the other axes M204 TXXXX
Planner : : travel_acceleration , // Travel acceleration mm/s^2 DEFAULT ACCELERATION for all NON printing moves. M204 MXXXX
2016-10-02 11:37:13 +02:00
Planner : : max_jerk [ XYZE ] , // The largest speed change requiring no acceleration
2016-07-24 04:49:13 +02:00
Planner : : min_travel_feedrate_mm_s ;
2016-05-26 20:22:51 +02:00
2017-10-13 23:16:32 +02:00
# if HAS_LEVELING
bool Planner : : leveling_active = false ; // Flag that auto bed leveling is enabled
# if ABL_PLANAR
matrix_3x3 Planner : : bed_level_matrix ; // Transform to compensate for bed level
# endif
# if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
float Planner : : z_fade_height , // Initialized by settings.load()
Planner : : inverse_z_fade_height ,
2017-11-03 02:17:51 +01:00
Planner : : last_fade_z ;
2017-10-13 23:16:32 +02:00
# endif
2017-12-07 00:14:54 +01:00
# else
constexpr bool Planner : : leveling_active ;
2016-11-26 06:32:47 +01:00
# endif
2017-11-05 01:21:41 +01:00
# if ENABLED(SKEW_CORRECTION)
# if ENABLED(SKEW_CORRECTION_GCODE)
float Planner : : xy_skew_factor ;
2017-12-07 00:14:54 +01:00
# else
constexpr float Planner : : xy_skew_factor ;
# endif
# if ENABLED(SKEW_CORRECTION_FOR_Z) && ENABLED(SKEW_CORRECTION_GCODE)
float Planner : : xz_skew_factor , Planner : : yz_skew_factor ;
# else
constexpr float Planner : : xz_skew_factor , Planner : : yz_skew_factor ;
2017-11-05 01:21:41 +01:00
# endif
# endif
2016-05-26 20:22:51 +02:00
# if ENABLED(AUTOTEMP)
2016-07-24 04:49:13 +02:00
float Planner : : autotemp_max = 250 ,
Planner : : autotemp_min = 210 ,
Planner : : autotemp_factor = 0.1 ;
2016-05-26 20:22:51 +02:00
bool Planner : : autotemp_enabled = false ;
# endif
// private:
2017-12-01 00:41:30 +01:00
int32_t Planner : : position [ NUM_AXIS ] = { 0 } ;
2016-05-26 20:22:51 +02:00
2016-10-23 12:47:46 +02:00
uint32_t Planner : : cutoff_long ;
2016-07-24 04:49:13 +02:00
float Planner : : previous_speed [ NUM_AXIS ] ,
Planner : : previous_nominal_speed ;
2016-05-26 20:22:51 +02:00
# if ENABLED(DISABLE_INACTIVE_EXTRUDER)
uint8_t Planner : : g_uc_extruder_last_move [ EXTRUDERS ] = { 0 } ;
2017-05-01 19:20:25 +02:00
# endif
2016-05-26 20:22:51 +02:00
# ifdef XY_FREQUENCY_LIMIT
// Old direction bits. Used for speed calculations
unsigned char Planner : : old_direction_bits = 0 ;
// Segment times (in µs). Used for speed calculations
2017-10-14 22:47:53 +02:00
uint32_t Planner : : axis_segment_time_us [ 2 ] [ 3 ] = { { MAX_FREQ_TIME_US + 1 , 0 , 0 } , { MAX_FREQ_TIME_US + 1 , 0 , 0 } } ;
2016-05-26 20:22:51 +02:00
# endif
2016-10-31 16:17:30 +01:00
# if ENABLED(LIN_ADVANCE)
2018-04-04 03:59:29 +02:00
float Planner : : extruder_advance_K ; // Initialized by settings.load()
# endif
# if HAS_POSITION_FLOAT
float Planner : : position_float [ XYZE ] ; // Needed for accurate maths. Steps cannot be used!
2016-10-31 16:17:30 +01:00
# endif
2016-12-12 14:35:02 +01:00
# if ENABLED(ULTRA_LCD)
2016-12-09 14:10:55 +01:00
volatile uint32_t Planner : : block_buffer_runtime_us = 0 ;
2016-11-21 17:49:16 +01:00
# endif
2016-05-26 20:22:51 +02:00
/**
* Class and Instance Methods
*/
2016-07-13 00:55:27 +02:00
Planner : : Planner ( ) { init ( ) ; }
2011-11-15 22:50:43 +01:00
2016-04-28 03:06:32 +02:00
void Planner : : init ( ) {
2016-10-22 17:07:18 +02:00
ZERO ( position ) ;
2018-04-04 03:59:29 +02:00
# if HAS_POSITION_FLOAT
2017-12-20 13:21:09 +01:00
ZERO ( position_float ) ;
# endif
2016-10-22 17:07:18 +02:00
ZERO ( previous_speed ) ;
2016-04-28 03:06:32 +02:00
previous_nominal_speed = 0.0 ;
2016-09-26 06:17:39 +02:00
# if ABL_PLANAR
2016-07-13 00:55:27 +02:00
bed_level_matrix . set_to_identity ( ) ;
# endif
2018-04-14 04:59:09 +02:00
clear_block_buffer ( ) ;
2011-11-15 22:50:43 +01:00
}
2018-05-08 10:42:45 +02:00
# if ENABLED(BEZIER_JERK_CONTROL)
// This routine, for AVR, returns 0x1000000 / d, but trying to get the inverse as
// fast as possible. A fast converging iterative Newton-Raphson method is able to
// reach full precision in just 1 iteration, and takes 211 cycles (worst case, mean
// case is less, up to 30 cycles for small divisors), instead of the 500 cycles a
// normal division would take.
//
// Inspired by the following page,
// https://stackoverflow.com/questions/27801397/newton-raphson-division-with-big-integers
//
// Suppose we want to calculate
// floor(2 ^ k / B) where B is a positive integer
// Then
// B must be <= 2^k, otherwise, the quotient is 0.
//
// The Newton - Raphson iteration for x = B / 2 ^ k yields:
// q[n + 1] = q[n] * (2 - q[n] * B / 2 ^ k)
//
// We can rearrange it as:
// q[n + 1] = q[n] * (2 ^ (k + 1) - q[n] * B) >> k
//
// Each iteration of this kind requires only integer multiplications
// and bit shifts.
// Does it converge to floor(2 ^ k / B) ?: Not necessarily, but, in
// the worst case, it eventually alternates between floor(2 ^ k / B)
// and ceiling(2 ^ k / B)).
// So we can use some not-so-clever test to see if we are in this
// case, and extract floor(2 ^ k / B).
// Lastly, a simple but important optimization for this approach is to
// truncate multiplications (i.e.calculate only the higher bits of the
// product) in the early iterations of the Newton - Raphson method.The
// reason to do so, is that the results of the early iterations are far
// from the quotient, and it doesn't matter to perform them inaccurately.
// Finally, we should pick a good starting value for x. Knowing how many
// digits the divisor has, we can estimate it:
//
// 2^k / x = 2 ^ log2(2^k / x)
// 2^k / x = 2 ^(log2(2^k)-log2(x))
// 2^k / x = 2 ^(k*log2(2)-log2(x))
// 2^k / x = 2 ^ (k-log2(x))
// 2^k / x >= 2 ^ (k-floor(log2(x)))
// floor(log2(x)) simply is the index of the most significant bit set.
//
// If we could improve this estimation even further, then the number of
// iterations can be dropped quite a bit, thus saving valuable execution time.
// The paper "Software Integer Division" by Thomas L.Rodeheffer, Microsoft
// Research, Silicon Valley,August 26, 2008, that is available at
// https://www.microsoft.com/en-us/research/wp-content/uploads/2008/08/tr-2008-141.pdf
// suggests , for its integer division algorithm, that using a table to supply the
// first 8 bits of precision, and due to the quadratic convergence nature of the
// Newton-Raphon iteration, then just 2 iterations should be enough to get
// maximum precision of the division.
// If we precompute values of inverses for small denominator values, then
// just one Newton-Raphson iteration is enough to reach full precision
// We will use the top 9 bits of the denominator as index.
//
// The AVR assembly function is implementing the following C code, included
// here as reference:
//
// uint32_t get_period_inverse(uint32_t d) {
// static const uint8_t inv_tab[256] = {
// 255,253,252,250,248,246,244,242,240,238,236,234,233,231,229,227,
// 225,224,222,220,218,217,215,213,212,210,208,207,205,203,202,200,
// 199,197,195,194,192,191,189,188,186,185,183,182,180,179,178,176,
// 175,173,172,170,169,168,166,165,164,162,161,160,158,157,156,154,
// 153,152,151,149,148,147,146,144,143,142,141,139,138,137,136,135,
// 134,132,131,130,129,128,127,126,125,123,122,121,120,119,118,117,
// 116,115,114,113,112,111,110,109,108,107,106,105,104,103,102,101,
// 100,99,98,97,96,95,94,93,92,91,90,89,88,88,87,86,
// 85,84,83,82,81,80,80,79,78,77,76,75,74,74,73,72,
// 71,70,70,69,68,67,66,66,65,64,63,62,62,61,60,59,
// 59,58,57,56,56,55,54,53,53,52,51,50,50,49,48,48,
// 47,46,46,45,44,43,43,42,41,41,40,39,39,38,37,37,
// 36,35,35,34,33,33,32,32,31,30,30,29,28,28,27,27,
// 26,25,25,24,24,23,22,22,21,21,20,19,19,18,18,17,
// 17,16,15,15,14,14,13,13,12,12,11,10,10,9,9,8,
// 8,7,7,6,6,5,5,4,4,3,3,2,2,1,0,0
// };
//
// // For small denominators, it is cheaper to directly store the result,
// // because those denominators would require 2 Newton-Raphson iterations
// // to converge to the required result precision. For bigger ones, just
// // ONE Newton-Raphson iteration is enough to get maximum precision!
// static const uint32_t small_inv_tab[111] PROGMEM = {
// 16777216,16777216,8388608,5592405,4194304,3355443,2796202,2396745,2097152,1864135,1677721,1525201,1398101,1290555,1198372,1118481,
// 1048576,986895,932067,883011,838860,798915,762600,729444,699050,671088,645277,621378,599186,578524,559240,541200,
// 524288,508400,493447,479349,466033,453438,441505,430185,419430,409200,399457,390167,381300,372827,364722,356962,
// 349525,342392,335544,328965,322638,316551,310689,305040,299593,294337,289262,284359,279620,275036,270600,266305,
// 262144,258111,254200,250406,246723,243148,239674,236298,233016,229824,226719,223696,220752,217885,215092,212369,
// 209715,207126,204600,202135,199728,197379,195083,192841,190650,188508,186413,184365,182361,180400,178481,176602,
// 174762,172960,171196,169466,167772,166111,164482,162885,161319,159783,158275,156796,155344,153919,152520
// };
//
// // For small divisors, it is best to directly retrieve the results
// if (d <= 110)
// return pgm_read_dword(&small_inv_tab[d]);
//
// // Compute initial estimation of 0x1000000/x -
// // Get most significant bit set on divider
// uint8_t idx = 0;
// uint32_t nr = d;
// if (!(nr & 0xFF0000)) {
// nr <<= 8;
// idx += 8;
// if (!(nr & 0xFF0000)) {
// nr <<= 8;
// idx += 8;
// }
// }
// if (!(nr & 0xF00000)) {
// nr <<= 4;
// idx += 4;
// }
// if (!(nr & 0xC00000)) {
// nr <<= 2;
// idx += 2;
// }
// if (!(nr & 0x800000)) {
// nr <<= 1;
// idx += 1;
// }
//
// // Isolate top 9 bits of the denominator, to be used as index into the initial estimation table
// uint32_t tidx = nr >> 15; // top 9 bits. bit8 is always set
// uint32_t ie = inv_tab[tidx & 0xFF] + 256; // Get the table value. bit9 is always set
// uint32_t x = idx <= 8 ? (ie >> (8 - idx)) : (ie << (idx - 8)); // Position the estimation at the proper place
//
// // Now, refine estimation by newton-raphson. 1 iteration is enough
// x = uint32_t((x * uint64_t((1 << 25) - x * d)) >> 24);
//
// // Estimate remainder
// uint32_t r = (1 << 24) - x * d;
//
// // Check if we must adjust result
// if (r >= d) x++;
//
// // x holds the proper estimation
// return uint32_t(x);
// }
//
static uint32_t get_period_inverse ( uint32_t d ) {
static const uint8_t inv_tab [ 256 ] PROGMEM = {
255 , 253 , 252 , 250 , 248 , 246 , 244 , 242 , 240 , 238 , 236 , 234 , 233 , 231 , 229 , 227 ,
225 , 224 , 222 , 220 , 218 , 217 , 215 , 213 , 212 , 210 , 208 , 207 , 205 , 203 , 202 , 200 ,
199 , 197 , 195 , 194 , 192 , 191 , 189 , 188 , 186 , 185 , 183 , 182 , 180 , 179 , 178 , 176 ,
175 , 173 , 172 , 170 , 169 , 168 , 166 , 165 , 164 , 162 , 161 , 160 , 158 , 157 , 156 , 154 ,
153 , 152 , 151 , 149 , 148 , 147 , 146 , 144 , 143 , 142 , 141 , 139 , 138 , 137 , 136 , 135 ,
134 , 132 , 131 , 130 , 129 , 128 , 127 , 126 , 125 , 123 , 122 , 121 , 120 , 119 , 118 , 117 ,
116 , 115 , 114 , 113 , 112 , 111 , 110 , 109 , 108 , 107 , 106 , 105 , 104 , 103 , 102 , 101 ,
100 , 99 , 98 , 97 , 96 , 95 , 94 , 93 , 92 , 91 , 90 , 89 , 88 , 88 , 87 , 86 ,
85 , 84 , 83 , 82 , 81 , 80 , 80 , 79 , 78 , 77 , 76 , 75 , 74 , 74 , 73 , 72 ,
71 , 70 , 70 , 69 , 68 , 67 , 66 , 66 , 65 , 64 , 63 , 62 , 62 , 61 , 60 , 59 ,
59 , 58 , 57 , 56 , 56 , 55 , 54 , 53 , 53 , 52 , 51 , 50 , 50 , 49 , 48 , 48 ,
47 , 46 , 46 , 45 , 44 , 43 , 43 , 42 , 41 , 41 , 40 , 39 , 39 , 38 , 37 , 37 ,
36 , 35 , 35 , 34 , 33 , 33 , 32 , 32 , 31 , 30 , 30 , 29 , 28 , 28 , 27 , 27 ,
26 , 25 , 25 , 24 , 24 , 23 , 22 , 22 , 21 , 21 , 20 , 19 , 19 , 18 , 18 , 17 ,
17 , 16 , 15 , 15 , 14 , 14 , 13 , 13 , 12 , 12 , 11 , 10 , 10 , 9 , 9 , 8 ,
8 , 7 , 7 , 6 , 6 , 5 , 5 , 4 , 4 , 3 , 3 , 2 , 2 , 1 , 0 , 0
} ;
// For small denominators, it is cheaper to directly store the result.
// For bigger ones, just ONE Newton-Raphson iteration is enough to get
// maximum precision we need
static const uint32_t small_inv_tab [ 111 ] PROGMEM = {
16777216 , 16777216 , 8388608 , 5592405 , 4194304 , 3355443 , 2796202 , 2396745 , 2097152 , 1864135 , 1677721 , 1525201 , 1398101 , 1290555 , 1198372 , 1118481 ,
1048576 , 986895 , 932067 , 883011 , 838860 , 798915 , 762600 , 729444 , 699050 , 671088 , 645277 , 621378 , 599186 , 578524 , 559240 , 541200 ,
524288 , 508400 , 493447 , 479349 , 466033 , 453438 , 441505 , 430185 , 419430 , 409200 , 399457 , 390167 , 381300 , 372827 , 364722 , 356962 ,
349525 , 342392 , 335544 , 328965 , 322638 , 316551 , 310689 , 305040 , 299593 , 294337 , 289262 , 284359 , 279620 , 275036 , 270600 , 266305 ,
262144 , 258111 , 254200 , 250406 , 246723 , 243148 , 239674 , 236298 , 233016 , 229824 , 226719 , 223696 , 220752 , 217885 , 215092 , 212369 ,
209715 , 207126 , 204600 , 202135 , 199728 , 197379 , 195083 , 192841 , 190650 , 188508 , 186413 , 184365 , 182361 , 180400 , 178481 , 176602 ,
174762 , 172960 , 171196 , 169466 , 167772 , 166111 , 164482 , 162885 , 161319 , 159783 , 158275 , 156796 , 155344 , 153919 , 152520
} ;
// For small divisors, it is best to directly retrieve the results
if ( d < = 110 )
return pgm_read_dword ( & small_inv_tab [ d ] ) ;
register uint8_t r8 = d & 0xFF ;
register uint8_t r9 = ( d > > 8 ) & 0xFF ;
register uint8_t r10 = ( d > > 16 ) & 0xFF ;
register uint8_t r2 , r3 , r4 , r5 , r6 , r7 , r11 , r12 , r13 , r14 , r15 , r16 , r17 , r18 ;
register const uint8_t * ptab = inv_tab ;
__asm__ __volatile__ (
// %8:%7:%6 = interval
// r31:r30: MUST be those registers, and they must point to the inv_tab
A ( " clr %13 " ) // %13 = 0
// Now we must compute
// result = 0xFFFFFF / d
// %8:%7:%6 = interval
// %16:%15:%14 = nr
// %13 = 0
// A plain division of 24x24 bits should take 388 cycles to complete. We will
// use Newton-Raphson for the calculation, and will strive to get way less cycles
// for the same result - Using C division, it takes 500cycles to complete .
A ( " clr %3 " ) // idx = 0
A ( " mov %14,%6 " )
A ( " mov %15,%7 " )
A ( " mov %16,%8 " ) // nr = interval
A ( " tst %16 " ) // nr & 0xFF0000 == 0 ?
A ( " brne 2f " ) // No, skip this
A ( " mov %16,%15 " )
A ( " mov %15,%14 " ) // nr <<= 8, %14 not needed
A ( " subi %3,-8 " ) // idx += 8
A ( " tst %16 " ) // nr & 0xFF0000 == 0 ?
A ( " brne 2f " ) // No, skip this
A ( " mov %16,%15 " ) // nr <<= 8, %14 not needed
A ( " clr %15 " ) // We clear %14
A ( " subi %3,-8 " ) // idx += 8
// here %16 != 0 and %16:%15 contains at least 9 MSBits, or both %16:%15 are 0
L ( " 2 " )
A ( " cpi %16,0x10 " ) // (nr & 0xF00000) == 0 ?
A ( " brcc 3f " ) // No, skip this
A ( " swap %15 " ) // Swap nibbles
A ( " swap %16 " ) // Swap nibbles. Low nibble is 0
A ( " mov %14, %15 " )
A ( " andi %14,0x0F " ) // Isolate low nibble
A ( " andi %15,0xF0 " ) // Keep proper nibble in %15
A ( " or %16, %14 " ) // %16:%15 <<= 4
A ( " subi %3,-4 " ) // idx += 4
L ( " 3 " )
A ( " cpi %16,0x40 " ) // (nr & 0xC00000) == 0 ?
A ( " brcc 4f " ) // No, skip this
A ( " add %15,%15 " )
A ( " adc %16,%16 " )
A ( " add %15,%15 " )
A ( " adc %16,%16 " ) // %16:%15 <<= 2
A ( " subi %3,-2 " ) // idx += 2
L ( " 4 " )
A ( " cpi %16,0x80 " ) // (nr & 0x800000) == 0 ?
A ( " brcc 5f " ) // No, skip this
A ( " add %15,%15 " )
A ( " adc %16,%16 " ) // %16:%15 <<= 1
A ( " inc %3 " ) // idx += 1
// Now %16:%15 contains its MSBit set to 1, or %16:%15 is == 0. We are now absolutely sure
// we have at least 9 MSBits available to enter the initial estimation table
L ( " 5 " )
A ( " add %15,%15 " )
A ( " adc %16,%16 " ) // %16:%15 = tidx = (nr <<= 1), we lose the top MSBit (always set to 1, %16 is the index into the inverse table)
A ( " add r30,%16 " ) // Only use top 8 bits
A ( " adc r31,%13 " ) // r31:r30 = inv_tab + (tidx)
A ( " lpm %14, Z " ) // %14 = inv_tab[tidx]
A ( " ldi %15, 1 " ) // %15 = 1 %15:%14 = inv_tab[tidx] + 256
// We must scale the approximation to the proper place
A ( " clr %16 " ) // %16 will always be 0 here
A ( " subi %3,8 " ) // idx == 8 ?
A ( " breq 6f " ) // yes, no need to scale
A ( " brcs 7f " ) // If C=1, means idx < 8, result was negative!
// idx > 8, now %3 = idx - 8. We must perform a left shift. idx range:[1-8]
A ( " sbrs %3,0 " ) // shift by 1bit position?
A ( " rjmp 8f " ) // No
A ( " add %14,%14 " )
A ( " adc %15,%15 " ) // %15:16 <<= 1
L ( " 8 " )
A ( " sbrs %3,1 " ) // shift by 2bit position?
A ( " rjmp 9f " ) // No
A ( " add %14,%14 " )
A ( " adc %15,%15 " )
A ( " add %14,%14 " )
A ( " adc %15,%15 " ) // %15:16 <<= 1
L ( " 9 " )
A ( " sbrs %3,2 " ) // shift by 4bits position?
A ( " rjmp 16f " ) // No
A ( " swap %15 " ) // Swap nibbles. lo nibble of %15 will always be 0
A ( " swap %14 " ) // Swap nibbles
A ( " mov %12,%14 " )
A ( " andi %12,0x0F " ) // isolate low nibble
A ( " andi %14,0xF0 " ) // and clear it
A ( " or %15,%12 " ) // %15:%16 <<= 4
L ( " 16 " )
A ( " sbrs %3,3 " ) // shift by 8bits position?
A ( " rjmp 6f " ) // No, we are done
A ( " mov %16,%15 " )
A ( " mov %15,%14 " )
A ( " clr %14 " )
A ( " jmp 6f " )
// idx < 8, now %3 = idx - 8. Get the count of bits
L ( " 7 " )
A ( " neg %3 " ) // %3 = -idx = count of bits to move right. idx range:[1...8]
A ( " sbrs %3,0 " ) // shift by 1 bit position ?
A ( " rjmp 10f " ) // No, skip it
A ( " asr %15 " ) // (bit7 is always 0 here)
A ( " ror %14 " )
L ( " 10 " )
A ( " sbrs %3,1 " ) // shift by 2 bit position ?
A ( " rjmp 11f " ) // No, skip it
A ( " asr %15 " ) // (bit7 is always 0 here)
A ( " ror %14 " )
A ( " asr %15 " ) // (bit7 is always 0 here)
A ( " ror %14 " )
L ( " 11 " )
A ( " sbrs %3,2 " ) // shift by 4 bit position ?
A ( " rjmp 12f " ) // No, skip it
A ( " swap %15 " ) // Swap nibbles
A ( " andi %14, 0xF0 " ) // Lose the lowest nibble
A ( " swap %14 " ) // Swap nibbles. Upper nibble is 0
A ( " or %14,%15 " ) // Pass nibble from upper byte
A ( " andi %15, 0x0F " ) // And get rid of that nibble
L ( " 12 " )
A ( " sbrs %3,3 " ) // shift by 8 bit position ?
A ( " rjmp 6f " ) // No, skip it
A ( " mov %14,%15 " )
A ( " clr %15 " )
L ( " 6 " ) // %16:%15:%14 = initial estimation of 0x1000000 / d)
// Now, we must refine the estimation present on %16:%15:%14 using 1 iteration
// of Newton-Raphson. As it has a quadratic convergence, 1 iteration is enough
// to get more than 18bits of precision (the initial table lookup gives 9 bits of
// precision to start from). 18bits of precision is all what is needed here for result
// %8:%7:%6 = d = interval
// %16:%15:%14 = x = initial estimation of 0x1000000 / d
// %13 = 0
// %3:%2:%1:%0 = working accumulator
// Compute 1<<25 - x*d. Result should never exceed 25 bits and should always be positive
A ( " clr %0 " )
A ( " clr %1 " )
A ( " clr %2 " )
A ( " ldi %3,2 " ) // %3:%2:%1:%0 = 0x2000000
A ( " mul %6,%14 " ) // r1:r0 = LO(d) * LO(x)
A ( " sub %0,r0 " )
A ( " sbc %1,r1 " )
A ( " sbc %2,%13 " )
A ( " sbc %3,%13 " ) // %3:%2:%1:%0 -= LO(d) * LO(x)
A ( " mul %7,%14 " ) // r1:r0 = MI(d) * LO(x)
A ( " sub %1,r0 " )
A ( " sbc %2,r1 " )
A ( " sbc %3,%13 " ) // %3:%2:%1:%0 -= MI(d) * LO(x) << 8
A ( " mul %8,%14 " ) // r1:r0 = HI(d) * LO(x)
A ( " sub %2,r0 " )
A ( " sbc %3,r1 " ) // %3:%2:%1:%0 -= MIL(d) * LO(x) << 16
A ( " mul %6,%15 " ) // r1:r0 = LO(d) * MI(x)
A ( " sub %1,r0 " )
A ( " sbc %2,r1 " )
A ( " sbc %3,%13 " ) // %3:%2:%1:%0 -= LO(d) * MI(x) << 8
A ( " mul %7,%15 " ) // r1:r0 = MI(d) * MI(x)
A ( " sub %2,r0 " )
A ( " sbc %3,r1 " ) // %3:%2:%1:%0 -= MI(d) * MI(x) << 16
A ( " mul %8,%15 " ) // r1:r0 = HI(d) * MI(x)
A ( " sub %3,r0 " ) // %3:%2:%1:%0 -= MIL(d) * MI(x) << 24
A ( " mul %6,%16 " ) // r1:r0 = LO(d) * HI(x)
A ( " sub %2,r0 " )
A ( " sbc %3,r1 " ) // %3:%2:%1:%0 -= LO(d) * HI(x) << 16
A ( " mul %7,%16 " ) // r1:r0 = MI(d) * HI(x)
A ( " sub %3,r0 " ) // %3:%2:%1:%0 -= MI(d) * HI(x) << 24
// %3:%2:%1:%0 = (1<<25) - x*d [169]
// We need to multiply that result by x, and we are only interested in the top 24bits of that multiply
// %16:%15:%14 = x = initial estimation of 0x1000000 / d
// %3:%2:%1:%0 = (1<<25) - x*d = acc
// %13 = 0
// result = %11:%10:%9:%5:%4
A ( " mul %14,%0 " ) // r1:r0 = LO(x) * LO(acc)
A ( " mov %4,r1 " )
A ( " clr %5 " )
A ( " clr %9 " )
A ( " clr %10 " )
A ( " clr %11 " ) // %11:%10:%9:%5:%4 = LO(x) * LO(acc) >> 8
A ( " mul %15,%0 " ) // r1:r0 = MI(x) * LO(acc)
A ( " add %4,r0 " )
A ( " adc %5,r1 " )
A ( " adc %9,%13 " )
A ( " adc %10,%13 " )
A ( " adc %11,%13 " ) // %11:%10:%9:%5:%4 += MI(x) * LO(acc)
A ( " mul %16,%0 " ) // r1:r0 = HI(x) * LO(acc)
A ( " add %5,r0 " )
A ( " adc %9,r1 " )
A ( " adc %10,%13 " )
A ( " adc %11,%13 " ) // %11:%10:%9:%5:%4 += MI(x) * LO(acc) << 8
A ( " mul %14,%1 " ) // r1:r0 = LO(x) * MIL(acc)
A ( " add %4,r0 " )
A ( " adc %5,r1 " )
A ( " adc %9,%13 " )
A ( " adc %10,%13 " )
A ( " adc %11,%13 " ) // %11:%10:%9:%5:%4 = LO(x) * MIL(acc)
A ( " mul %15,%1 " ) // r1:r0 = MI(x) * MIL(acc)
A ( " add %5,r0 " )
A ( " adc %9,r1 " )
A ( " adc %10,%13 " )
A ( " adc %11,%13 " ) // %11:%10:%9:%5:%4 += MI(x) * MIL(acc) << 8
A ( " mul %16,%1 " ) // r1:r0 = HI(x) * MIL(acc)
A ( " add %9,r0 " )
A ( " adc %10,r1 " )
A ( " adc %11,%13 " ) // %11:%10:%9:%5:%4 += MI(x) * MIL(acc) << 16
A ( " mul %14,%2 " ) // r1:r0 = LO(x) * MIH(acc)
A ( " add %5,r0 " )
A ( " adc %9,r1 " )
A ( " adc %10,%13 " )
A ( " adc %11,%13 " ) // %11:%10:%9:%5:%4 = LO(x) * MIH(acc) << 8
A ( " mul %15,%2 " ) // r1:r0 = MI(x) * MIH(acc)
A ( " add %9,r0 " )
A ( " adc %10,r1 " )
A ( " adc %11,%13 " ) // %11:%10:%9:%5:%4 += MI(x) * MIH(acc) << 16
A ( " mul %16,%2 " ) // r1:r0 = HI(x) * MIH(acc)
A ( " add %10,r0 " )
A ( " adc %11,r1 " ) // %11:%10:%9:%5:%4 += MI(x) * MIH(acc) << 24
A ( " mul %14,%3 " ) // r1:r0 = LO(x) * HI(acc)
A ( " add %9,r0 " )
A ( " adc %10,r1 " )
A ( " adc %11,%13 " ) // %11:%10:%9:%5:%4 = LO(x) * HI(acc) << 16
A ( " mul %15,%3 " ) // r1:r0 = MI(x) * HI(acc)
A ( " add %10,r0 " )
A ( " adc %11,r1 " ) // %11:%10:%9:%5:%4 += MI(x) * HI(acc) << 24
A ( " mul %16,%3 " ) // r1:r0 = HI(x) * HI(acc)
A ( " add %11,r0 " ) // %11:%10:%9:%5:%4 += MI(x) * HI(acc) << 32
// At this point, %11:%10:%9 contains the new estimation of x.
// Finally, we must correct the result. Estimate remainder as
// (1<<24) - x*d
// %11:%10:%9 = x
// %8:%7:%6 = d = interval" "\n\t"
A ( " ldi %3,1 " )
A ( " clr %2 " )
A ( " clr %1 " )
A ( " clr %0 " ) // %3:%2:%1:%0 = 0x1000000
A ( " mul %6,%9 " ) // r1:r0 = LO(d) * LO(x)
A ( " sub %0,r0 " )
A ( " sbc %1,r1 " )
A ( " sbc %2,%13 " )
A ( " sbc %3,%13 " ) // %3:%2:%1:%0 -= LO(d) * LO(x)
A ( " mul %7,%9 " ) // r1:r0 = MI(d) * LO(x)
A ( " sub %1,r0 " )
A ( " sbc %2,r1 " )
A ( " sbc %3,%13 " ) // %3:%2:%1:%0 -= MI(d) * LO(x) << 8
A ( " mul %8,%9 " ) // r1:r0 = HI(d) * LO(x)
A ( " sub %2,r0 " )
A ( " sbc %3,r1 " ) // %3:%2:%1:%0 -= MIL(d) * LO(x) << 16
A ( " mul %6,%10 " ) // r1:r0 = LO(d) * MI(x)
A ( " sub %1,r0 " )
A ( " sbc %2,r1 " )
A ( " sbc %3,%13 " ) // %3:%2:%1:%0 -= LO(d) * MI(x) << 8
A ( " mul %7,%10 " ) // r1:r0 = MI(d) * MI(x)
A ( " sub %2,r0 " )
A ( " sbc %3,r1 " ) // %3:%2:%1:%0 -= MI(d) * MI(x) << 16
A ( " mul %8,%10 " ) // r1:r0 = HI(d) * MI(x)
A ( " sub %3,r0 " ) // %3:%2:%1:%0 -= MIL(d) * MI(x) << 24
A ( " mul %6,%11 " ) // r1:r0 = LO(d) * HI(x)
A ( " sub %2,r0 " )
A ( " sbc %3,r1 " ) // %3:%2:%1:%0 -= LO(d) * HI(x) << 16
A ( " mul %7,%11 " ) // r1:r0 = MI(d) * HI(x)
A ( " sub %3,r0 " ) // %3:%2:%1:%0 -= MI(d) * HI(x) << 24
// %3:%2:%1:%0 = r = (1<<24) - x*d
// %8:%7:%6 = d = interval
// Perform the final correction
A ( " sub %0,%6 " )
A ( " sbc %1,%7 " )
A ( " sbc %2,%8 " ) // r -= d
A ( " brcs 14f " ) // if ( r >= d)
// %11:%10:%9 = x
A ( " ldi %3,1 " )
A ( " add %9,%3 " )
A ( " adc %10,%13 " )
A ( " adc %11,%13 " ) // x++
L ( " 14 " )
// Estimation is done. %11:%10:%9 = x
A ( " clr __zero_reg__ " ) // Make C runtime happy
// [211 cycles total]
: " =r " ( r2 ) ,
" =r " ( r3 ) ,
" =r " ( r4 ) ,
" =d " ( r5 ) ,
" =r " ( r6 ) ,
" =r " ( r7 ) ,
" +r " ( r8 ) ,
" +r " ( r9 ) ,
" +r " ( r10 ) ,
" =d " ( r11 ) ,
" =r " ( r12 ) ,
" =r " ( r13 ) ,
" =d " ( r14 ) ,
" =d " ( r15 ) ,
" =d " ( r16 ) ,
" =d " ( r17 ) ,
" =d " ( r18 ) ,
" +z " ( ptab )
:
: " r0 " , " r1 " , " cc "
) ;
// Return the result
return r11 | ( uint16_t ( r12 ) < < 8 ) | ( uint32_t ( r13 ) < < 16 ) ;
}
# endif // BEZIER_JERK_CONTROL
2016-10-11 09:01:20 +02:00
# define MINIMAL_STEP_RATE 120
2016-04-28 03:06:32 +02:00
/**
* Calculate trapezoid parameters , multiplying the entry - and exit - speeds
* by the provided factors .
*/
2016-10-11 06:17:49 +02:00
void Planner : : calculate_trapezoid_for_block ( block_t * const block , const float & entry_factor , const float & exit_factor ) {
2017-06-20 05:39:23 +02:00
uint32_t initial_rate = CEIL ( block - > nominal_rate * entry_factor ) ,
final_rate = CEIL ( block - > nominal_rate * exit_factor ) ; // (steps per second)
2011-11-15 22:50:43 +01:00
// Limit minimal step rate (Otherwise the timer will overflow.)
2016-10-11 09:01:20 +02:00
NOLESS ( initial_rate , MINIMAL_STEP_RATE ) ;
NOLESS ( final_rate , MINIMAL_STEP_RATE ) ;
2012-06-11 17:33:42 +02:00
2018-05-08 10:42:45 +02:00
# if ENABLED(BEZIER_JERK_CONTROL)
uint32_t cruise_rate = initial_rate ;
# endif
2017-12-03 03:12:35 +01:00
const int32_t accel = block - > acceleration_steps_per_s2 ;
// Steps required for acceleration, deceleration to/from nominal rate
int32_t accelerate_steps = CEIL ( estimate_acceleration_distance ( initial_rate , block - > nominal_rate , accel ) ) ,
2018-01-16 18:31:27 +01:00
decelerate_steps = FLOOR ( estimate_acceleration_distance ( block - > nominal_rate , final_rate , - accel ) ) ,
2017-12-03 03:12:35 +01:00
// Steps between acceleration and deceleration, if any
2016-10-02 11:38:17 +02:00
plateau_steps = block - > step_event_count - accelerate_steps - decelerate_steps ;
2012-06-11 17:33:42 +02:00
2017-12-03 03:12:35 +01:00
// Does accelerate_steps + decelerate_steps exceed step_event_count?
// Then we can't possibly reach the nominal rate, there will be no cruising.
// Use intersection_distance() to calculate accel / braking time in order to
// reach the final_rate exactly at the end of this block.
2011-11-15 22:50:43 +01:00
if ( plateau_steps < 0 ) {
2017-06-20 05:39:23 +02:00
accelerate_steps = CEIL ( intersection_distance ( initial_rate , final_rate , accel , block - > step_event_count ) ) ;
2016-10-02 11:38:17 +02:00
NOLESS ( accelerate_steps , 0 ) ; // Check limits due to numerical round-off
2015-03-21 04:42:49 +01:00
accelerate_steps = min ( ( uint32_t ) accelerate_steps , block - > step_event_count ) ; //(We can cast here to unsigned, because the above line ensures that we are above zero)
2011-11-15 22:50:43 +01:00
plateau_steps = 0 ;
2018-05-08 10:42:45 +02:00
# if ENABLED(BEZIER_JERK_CONTROL)
// We won't reach the cruising rate. Let's calculate the speed we will reach
cruise_rate = final_speed ( initial_rate , accel , accelerate_steps ) ;
# endif
2011-11-15 22:50:43 +01:00
}
2018-05-08 10:42:45 +02:00
# if ENABLED(BEZIER_JERK_CONTROL)
else // We have some plateau time, so the cruise rate will be the nominal rate
cruise_rate = block - > nominal_rate ;
# endif
2011-11-15 22:50:43 +01:00
2012-06-11 17:33:42 +02:00
// block->accelerate_until = accelerate_steps;
// block->decelerate_after = accelerate_steps+plateau_steps;
2016-10-11 09:01:20 +02:00
2018-05-08 10:42:45 +02:00
# if ENABLED(BEZIER_JERK_CONTROL)
// Jerk controlled speed requires to express speed versus time, NOT steps
uint32_t acceleration_time = ( ( float ) ( cruise_rate - initial_rate ) / accel ) * ( HAL_STEPPER_TIMER_RATE ) ,
deceleration_time = ( ( float ) ( cruise_rate - final_rate ) / accel ) * ( HAL_STEPPER_TIMER_RATE ) ;
// And to offload calculations from the ISR, we also calculate the inverse of those times here
uint32_t acceleration_time_inverse = get_period_inverse ( acceleration_time ) ;
uint32_t deceleration_time_inverse = get_period_inverse ( deceleration_time ) ;
# endif
2011-11-15 22:50:43 +01:00
CRITICAL_SECTION_START ; // Fill variables used by the stepper in a critical section
2016-10-30 22:05:14 +01:00
if ( ! TEST ( block - > flag , BLOCK_BIT_BUSY ) ) { // Don't update variables if block is busy.
2011-11-15 22:50:43 +01:00
block - > accelerate_until = accelerate_steps ;
2015-10-03 08:08:58 +02:00
block - > decelerate_after = accelerate_steps + plateau_steps ;
2011-11-15 22:50:43 +01:00
block - > initial_rate = initial_rate ;
2018-05-08 10:42:45 +02:00
# if ENABLED(BEZIER_JERK_CONTROL)
block - > acceleration_time = acceleration_time ;
block - > deceleration_time = deceleration_time ;
block - > acceleration_time_inverse = acceleration_time_inverse ;
block - > deceleration_time_inverse = deceleration_time_inverse ;
block - > cruise_rate = cruise_rate ;
# endif
2011-11-15 22:50:43 +01:00
block - > final_rate = final_rate ;
}
CRITICAL_SECTION_END ;
2015-08-11 18:38:26 +02:00
}
2011-11-15 22:50:43 +01:00
// "Junction jerk" in this context is the immediate change in speed at the junction of two blocks.
2015-08-11 18:38:26 +02:00
// This method will calculate the junction jerk as the euclidean distance between the nominal
2011-11-15 22:50:43 +01:00
// velocities of the respective blocks.
//inline float junction_jerk(block_t *before, block_t *after) {
2017-06-20 05:39:23 +02:00
// return SQRT(
// POW((before->speed_x-after->speed_x), 2)+POW((before->speed_y-after->speed_y), 2));
2011-11-15 22:50:43 +01:00
//}
2016-04-28 03:06:32 +02:00
// The kernel called by recalculate() when scanning the plan from last to first entry.
2017-12-09 02:19:13 +01:00
void Planner : : reverse_pass_kernel ( block_t * const current , const block_t * const next ) {
2016-10-11 06:17:49 +02:00
if ( ! current | | ! next ) return ;
// If entry speed is already at the maximum entry speed, no need to recheck. Block is cruising.
// If not, block in state of acceleration or deceleration. Reset entry speed to maximum and
// check for maximum allowable speed reductions to ensure maximum possible planned speed.
float max_entry_speed = current - > max_entry_speed ;
if ( current - > entry_speed ! = max_entry_speed ) {
// If nominal length true, max junction speed is guaranteed to be reached. Only compute
// for max allowable speed if block is decelerating and nominal length is false.
2016-10-30 22:05:14 +01:00
current - > entry_speed = ( TEST ( current - > flag , BLOCK_BIT_NOMINAL_LENGTH ) | | max_entry_speed < = next - > entry_speed )
2016-10-11 06:17:49 +02:00
? max_entry_speed
: min ( max_entry_speed , max_allowable_speed ( - current - > acceleration , next - > entry_speed , current - > millimeters ) ) ;
2016-10-30 22:05:14 +01:00
SBI ( current - > flag , BLOCK_BIT_RECALCULATE ) ;
2016-10-11 06:17:49 +02:00
}
2011-11-15 22:50:43 +01:00
}
2016-04-28 03:06:32 +02:00
/**
* recalculate ( ) needs to go over the current plan twice .
* Once in reverse and once forward . This implements the reverse pass .
*/
void Planner : : reverse_pass ( ) {
2018-03-05 04:18:35 +01:00
if ( movesplanned ( ) > 2 ) {
const uint8_t endnr = BLOCK_MOD ( block_buffer_tail + 1 ) ; // tail is running. tail+1 shouldn't be altered because it's connected to the running block.
2017-12-09 02:19:13 +01:00
uint8_t blocknr = prev_block_index ( block_buffer_head ) ;
block_t * current = & block_buffer [ blocknr ] ;
2018-03-05 04:18:35 +01:00
// Last/newest block in buffer:
const float max_entry_speed = current - > max_entry_speed ;
if ( current - > entry_speed ! = max_entry_speed ) {
// If nominal length true, max junction speed is guaranteed to be reached. Only compute
// for max allowable speed if block is decelerating and nominal length is false.
current - > entry_speed = TEST ( current - > flag , BLOCK_BIT_NOMINAL_LENGTH )
? max_entry_speed
: min ( max_entry_speed , max_allowable_speed ( - current - > acceleration , MINIMUM_PLANNER_SPEED , current - > millimeters ) ) ;
SBI ( current - > flag , BLOCK_BIT_RECALCULATE ) ;
}
2017-12-09 02:19:13 +01:00
do {
const block_t * const next = current ;
blocknr = prev_block_index ( blocknr ) ;
current = & block_buffer [ blocknr ] ;
reverse_pass_kernel ( current , next ) ;
} while ( blocknr ! = endnr ) ;
2011-11-15 22:50:43 +01:00
}
}
2016-04-28 03:06:32 +02:00
// The kernel called by recalculate() when scanning the plan from first to last entry.
2017-12-09 02:19:13 +01:00
void Planner : : forward_pass_kernel ( const block_t * const previous , block_t * const current ) {
2015-03-21 04:42:49 +01:00
if ( ! previous ) return ;
2012-06-11 17:33:42 +02:00
2011-11-15 22:50:43 +01:00
// If the previous block is an acceleration block, but it is not long enough to complete the
// full speed change within the block, we need to adjust the entry speed accordingly. Entry
// speeds have already been reset, maximized, and reverse planned by reverse planner.
// If nominal length is true, max junction speed is guaranteed to be reached. No need to recheck.
2016-10-30 22:05:14 +01:00
if ( ! TEST ( previous - > flag , BLOCK_BIT_NOMINAL_LENGTH ) ) {
2011-11-15 22:50:43 +01:00
if ( previous - > entry_speed < current - > entry_speed ) {
2016-10-02 11:38:17 +02:00
float entry_speed = min ( current - > entry_speed ,
2015-10-03 08:08:58 +02:00
max_allowable_speed ( - previous - > acceleration , previous - > entry_speed , previous - > millimeters ) ) ;
2011-11-15 22:50:43 +01:00
// Check for junction speed change
if ( current - > entry_speed ! = entry_speed ) {
current - > entry_speed = entry_speed ;
2016-10-30 22:05:14 +01:00
SBI ( current - > flag , BLOCK_BIT_RECALCULATE ) ;
2011-11-15 22:50:43 +01:00
}
}
}
}
2016-04-28 03:06:32 +02:00
/**
* recalculate ( ) needs to go over the current plan twice .
* Once in reverse and once forward . This implements the forward pass .
*/
void Planner : : forward_pass ( ) {
2015-10-03 08:08:58 +02:00
block_t * block [ 3 ] = { NULL , NULL , NULL } ;
2011-11-15 22:50:43 +01:00
2016-04-28 03:06:32 +02:00
for ( uint8_t b = block_buffer_tail ; b ! = block_buffer_head ; b = next_block_index ( b ) ) {
2011-11-15 22:50:43 +01:00
block [ 0 ] = block [ 1 ] ;
block [ 1 ] = block [ 2 ] ;
2016-04-28 03:06:32 +02:00
block [ 2 ] = & block_buffer [ b ] ;
2016-08-30 21:16:13 +02:00
forward_pass_kernel ( block [ 0 ] , block [ 1 ] ) ;
2011-11-15 22:50:43 +01:00
}
2016-08-30 21:16:13 +02:00
forward_pass_kernel ( block [ 1 ] , block [ 2 ] ) ;
2011-11-15 22:50:43 +01:00
}
2016-04-28 03:06:32 +02:00
/**
* Recalculate the trapezoid speed profiles for all blocks in the plan
* according to the entry_factor for each junction . Must be called by
* recalculate ( ) after updating the blocks .
*/
void Planner : : recalculate_trapezoids ( ) {
2011-11-15 22:50:43 +01:00
int8_t block_index = block_buffer_tail ;
2016-10-11 06:17:49 +02:00
block_t * current , * next = NULL ;
2012-06-11 17:33:42 +02:00
2015-03-21 04:42:49 +01:00
while ( block_index ! = block_buffer_head ) {
2011-11-15 22:50:43 +01:00
current = next ;
next = & block_buffer [ block_index ] ;
if ( current ) {
// Recalculate if current block entry or exit junction speed has changed.
2016-10-30 22:05:14 +01:00
if ( TEST ( current - > flag , BLOCK_BIT_RECALCULATE ) | | TEST ( next - > flag , BLOCK_BIT_RECALCULATE ) ) {
2011-11-15 22:50:43 +01:00
// NOTE: Entry and exit factors always > 0 by all previous logic operations.
2017-12-09 02:19:13 +01:00
const float nomr = 1.0 / current - > nominal_speed ;
calculate_trapezoid_for_block ( current , current - > entry_speed * nomr , next - > entry_speed * nomr ) ;
2018-02-23 07:53:41 +01:00
# if ENABLED(LIN_ADVANCE)
if ( current - > use_advance_lead ) {
const float comp = current - > e_D_ratio * extruder_advance_K * axis_steps_per_mm [ E_AXIS ] ;
current - > max_adv_steps = current - > nominal_speed * comp ;
current - > final_adv_steps = next - > entry_speed * comp ;
}
# endif
2016-10-30 22:05:14 +01:00
CBI ( current - > flag , BLOCK_BIT_RECALCULATE ) ; // Reset current only to ensure next trapezoid is computed
2011-11-15 22:50:43 +01:00
}
}
2015-10-03 08:08:58 +02:00
block_index = next_block_index ( block_index ) ;
2011-11-15 22:50:43 +01:00
}
// Last/newest block in buffer. Exit speed is set with MINIMUM_PLANNER_SPEED. Always recalculated.
2015-03-21 04:42:49 +01:00
if ( next ) {
2017-12-09 02:19:13 +01:00
const float nomr = 1.0 / next - > nominal_speed ;
calculate_trapezoid_for_block ( next , next - > entry_speed * nomr , ( MINIMUM_PLANNER_SPEED ) * nomr ) ;
2018-02-23 07:53:41 +01:00
# if ENABLED(LIN_ADVANCE)
if ( next - > use_advance_lead ) {
const float comp = next - > e_D_ratio * extruder_advance_K * axis_steps_per_mm [ E_AXIS ] ;
next - > max_adv_steps = next - > nominal_speed * comp ;
next - > final_adv_steps = ( MINIMUM_PLANNER_SPEED ) * comp ;
}
# endif
2016-10-30 22:05:14 +01:00
CBI ( next - > flag , BLOCK_BIT_RECALCULATE ) ;
2011-11-15 22:50:43 +01:00
}
}
2018-01-23 23:18:54 +01:00
/**
2016-04-28 03:06:32 +02:00
* Recalculate the motion plan according to the following algorithm :
*
* 1. Go over every block in reverse order . . .
*
* Calculate a junction speed reduction ( block_t . entry_factor ) so :
*
* a . The junction jerk is within the set limit , and
*
* b . No speed reduction within one block requires faster
* deceleration than the one , true constant acceleration .
*
* 2. Go over every block in chronological order . . .
*
* Dial down junction speed reduction values if :
* a . The speed increase within one block would require faster
* acceleration than the one , true constant acceleration .
*
* After that , all blocks will have an entry_factor allowing all speed changes to
* be performed using only the one , true constant acceleration , and where no junction
* jerk is jerkier than the set limit , Jerky . Finally it will :
*
* 3. Recalculate " trapezoids " for all blocks .
*/
void Planner : : recalculate ( ) {
reverse_pass ( ) ;
forward_pass ( ) ;
recalculate_trapezoids ( ) ;
2011-11-15 22:50:43 +01:00
}
2015-07-31 07:30:29 +02:00
# if ENABLED(AUTOTEMP)
2016-04-28 03:06:32 +02:00
void Planner : : getHighESpeed ( ) {
2015-03-21 04:42:49 +01:00
static float oldt = 0 ;
2012-06-11 17:33:42 +02:00
2015-03-21 04:42:49 +01:00
if ( ! autotemp_enabled ) return ;
2016-04-29 03:18:13 +02:00
if ( thermalManager . degTargetHotend ( 0 ) + 2 < autotemp_min ) return ; // probably temperature set to zero.
2015-03-21 04:42:49 +01:00
float high = 0.0 ;
2016-04-28 03:06:32 +02:00
for ( uint8_t b = block_buffer_tail ; b ! = block_buffer_head ; b = next_block_index ( b ) ) {
block_t * block = & block_buffer [ b ] ;
2015-03-21 04:57:06 +01:00
if ( block - > steps [ X_AXIS ] | | block - > steps [ Y_AXIS ] | | block - > steps [ Z_AXIS ] ) {
float se = ( float ) block - > steps [ E_AXIS ] / block - > step_event_count * block - > nominal_speed ; // mm/sec;
2016-02-22 07:17:32 +01:00
NOLESS ( high , se ) ;
2012-04-15 19:17:33 +02:00
}
2011-11-15 22:50:43 +01:00
}
2012-06-11 17:33:42 +02:00
2015-03-21 04:42:49 +01:00
float t = autotemp_min + high * autotemp_factor ;
2015-04-13 03:07:08 +02:00
t = constrain ( t , autotemp_min , autotemp_max ) ;
2017-05-04 00:12:14 +02:00
if ( t < oldt ) t = t * ( 1 - ( AUTOTEMP_OLDWEIGHT ) ) + oldt * ( AUTOTEMP_OLDWEIGHT ) ;
2015-03-21 04:42:49 +01:00
oldt = t ;
2016-04-29 03:18:13 +02:00
thermalManager . setTargetHotend ( t , 0 ) ;
2011-11-19 17:07:44 +01:00
}
2016-04-28 03:06:32 +02:00
2017-05-09 19:35:43 +02:00
# endif // AUTOTEMP
2011-11-15 22:50:43 +01:00
2016-04-28 03:06:32 +02:00
/**
2016-06-23 03:22:17 +02:00
* Maintain fans , paste extruder pressure ,
2016-04-28 03:06:32 +02:00
*/
void Planner : : check_axes_activity ( ) {
2015-04-14 12:41:37 +02:00
unsigned char axis_active [ NUM_AXIS ] = { 0 } ,
2016-03-06 03:27:45 +01:00
tail_fan_speed [ FAN_COUNT ] ;
2015-07-31 07:30:29 +02:00
# if ENABLED(BARICUDA)
2016-04-30 11:51:18 +02:00
# if HAS_HEATER_1
2017-11-29 01:39:08 +01:00
uint8_t tail_valve_pressure ;
2016-04-30 11:51:18 +02:00
# endif
# if HAS_HEATER_2
2017-11-29 01:39:08 +01:00
uint8_t tail_e_to_p_pressure ;
2016-04-30 11:51:18 +02:00
# endif
2013-05-14 23:56:32 +02:00
# endif
2015-03-21 04:57:06 +01:00
2018-03-21 09:18:14 +01:00
if ( has_blocks_queued ( ) ) {
2016-03-06 03:27:45 +01:00
# if FAN_COUNT > 0
2017-11-23 22:25:11 +01:00
for ( uint8_t i = 0 ; i < FAN_COUNT ; i + + )
tail_fan_speed [ i ] = block_buffer [ block_buffer_tail ] . fan_speed [ i ] ;
2017-11-28 23:09:37 +01:00
# endif
2016-03-06 03:27:45 +01:00
2016-04-28 03:06:32 +02:00
block_t * block ;
2015-07-31 07:30:29 +02:00
# if ENABLED(BARICUDA)
2016-04-28 03:06:32 +02:00
block = & block_buffer [ block_buffer_tail ] ;
2016-04-30 11:51:18 +02:00
# if HAS_HEATER_1
tail_valve_pressure = block - > valve_pressure ;
# endif
# if HAS_HEATER_2
tail_e_to_p_pressure = block - > e_to_p_pressure ;
# endif
2013-05-14 23:56:32 +02:00
# endif
2016-03-06 03:27:45 +01:00
2016-04-28 03:06:32 +02:00
for ( uint8_t b = block_buffer_tail ; b ! = block_buffer_head ; b = next_block_index ( b ) ) {
block = & block_buffer [ b ] ;
2016-07-23 22:07:23 +02:00
LOOP_XYZE ( i ) if ( block - > steps [ i ] ) axis_active [ i ] + + ;
2011-11-15 22:50:43 +01:00
}
}
2017-11-29 01:39:08 +01:00
else {
# if FAN_COUNT > 0
for ( uint8_t i = 0 ; i < FAN_COUNT ; i + + ) tail_fan_speed [ i ] = fanSpeeds [ i ] ;
# endif
# if ENABLED(BARICUDA)
# if HAS_HEATER_1
tail_valve_pressure = baricuda_valve_pressure ;
# endif
# if HAS_HEATER_2
tail_e_to_p_pressure = baricuda_e_to_p_pressure ;
# endif
# endif
}
2017-11-23 22:25:11 +01:00
2016-03-14 06:15:45 +01:00
# if ENABLED(DISABLE_X)
2017-04-11 18:10:26 +02:00
if ( ! axis_active [ X_AXIS ] ) disable_X ( ) ;
2016-03-14 06:15:45 +01:00
# endif
# if ENABLED(DISABLE_Y)
2017-04-11 18:10:26 +02:00
if ( ! axis_active [ Y_AXIS ] ) disable_Y ( ) ;
2016-03-14 06:15:45 +01:00
# endif
# if ENABLED(DISABLE_Z)
2017-04-11 18:10:26 +02:00
if ( ! axis_active [ Z_AXIS ] ) disable_Z ( ) ;
2016-03-14 06:15:45 +01:00
# endif
# if ENABLED(DISABLE_E)
2017-03-18 03:12:19 +01:00
if ( ! axis_active [ E_AXIS ] ) disable_e_steppers ( ) ;
2016-03-14 06:15:45 +01:00
# endif
2013-05-14 22:25:53 +02:00
2017-11-28 23:09:37 +01:00
# if FAN_COUNT > 0
# if FAN_KICKSTART_TIME > 0
static millis_t fan_kick_end [ FAN_COUNT ] = { 0 } ;
# define KICKSTART_FAN(f) \
if ( tail_fan_speed [ f ] ) { \
millis_t ms = millis ( ) ; \
if ( fan_kick_end [ f ] = = 0 ) { \
fan_kick_end [ f ] = ms + FAN_KICKSTART_TIME ; \
tail_fan_speed [ f ] = 255 ; \
} else if ( PENDING ( ms , fan_kick_end [ f ] ) ) \
tail_fan_speed [ f ] = 255 ; \
} else fan_kick_end [ f ] = 0
# if HAS_FAN0
KICKSTART_FAN ( 0 ) ;
# endif
# if HAS_FAN1
KICKSTART_FAN ( 1 ) ;
# endif
# if HAS_FAN2
KICKSTART_FAN ( 2 ) ;
# endif
# endif // FAN_KICKSTART_TIME > 0
# ifdef FAN_MIN_PWM
# define CALC_FAN_SPEED(f) (tail_fan_speed[f] ? ( FAN_MIN_PWM + (tail_fan_speed[f] * (255 - FAN_MIN_PWM)) / 255 ) : 0)
# else
# define CALC_FAN_SPEED(f) tail_fan_speed[f]
# endif
# if ENABLED(FAN_SOFT_PWM)
# if HAS_FAN0
thermalManager . soft_pwm_amount_fan [ 0 ] = CALC_FAN_SPEED ( 0 ) ;
# endif
# if HAS_FAN1
thermalManager . soft_pwm_amount_fan [ 1 ] = CALC_FAN_SPEED ( 1 ) ;
# endif
# if HAS_FAN2
thermalManager . soft_pwm_amount_fan [ 2 ] = CALC_FAN_SPEED ( 2 ) ;
# endif
# else
# if HAS_FAN0
analogWrite ( FAN_PIN , CALC_FAN_SPEED ( 0 ) ) ;
# endif
# if HAS_FAN1
analogWrite ( FAN1_PIN , CALC_FAN_SPEED ( 1 ) ) ;
# endif
# if HAS_FAN2
analogWrite ( FAN2_PIN , CALC_FAN_SPEED ( 2 ) ) ;
# endif
# endif
# endif // FAN_COUNT > 0
2015-07-31 07:30:29 +02:00
# if ENABLED(AUTOTEMP)
2015-03-21 04:42:49 +01:00
getHighESpeed ( ) ;
2013-05-14 23:56:32 +02:00
# endif
2013-05-14 23:16:10 +02:00
2015-07-31 07:30:29 +02:00
# if ENABLED(BARICUDA)
2015-04-04 00:31:35 +02:00
# if HAS_HEATER_1
2015-10-03 08:08:58 +02:00
analogWrite ( HEATER_1_PIN , tail_valve_pressure ) ;
2015-03-21 04:42:49 +01:00
# endif
2015-04-04 00:31:35 +02:00
# if HAS_HEATER_2
2015-10-03 08:08:58 +02:00
analogWrite ( HEATER_2_PIN , tail_e_to_p_pressure ) ;
2015-03-21 04:42:49 +01:00
# endif
2013-05-14 23:56:32 +02:00
# endif
2011-11-15 22:50:43 +01:00
}
2017-12-20 03:33:41 +01:00
# if DISABLED(NO_VOLUMETRICS)
2017-11-10 09:38:53 +01:00
2017-12-20 03:33:41 +01:00
/**
* Get a volumetric multiplier from a filament diameter .
* This is the reciprocal of the circular cross - section area .
* Return 1.0 with volumetric off or a diameter of 0.0 .
*/
inline float calculate_volumetric_multiplier ( const float & diameter ) {
return ( parser . volumetric_enabled & & diameter ) ? 1.0 / CIRCLE_AREA ( diameter * 0.5 ) : 1.0 ;
2017-11-10 09:38:53 +01:00
}
2017-12-20 03:33:41 +01:00
/**
* Convert the filament sizes into volumetric multipliers .
* The multiplier converts a given E value into a length .
*/
void Planner : : calculate_volumetric_multipliers ( ) {
for ( uint8_t i = 0 ; i < COUNT ( filament_size ) ; i + + ) {
volumetric_multiplier [ i ] = calculate_volumetric_multiplier ( filament_size [ i ] ) ;
refresh_e_factor ( i ) ;
}
}
# endif // !NO_VOLUMETRICS
2017-11-10 09:38:53 +01:00
2017-12-13 09:15:21 +01:00
# if ENABLED(FILAMENT_WIDTH_SENSOR)
/**
* Convert the ratio value given by the filament width sensor
* into a volumetric multiplier . Conversion differs when using
* linear extrusion vs volumetric extrusion .
*/
void Planner : : calculate_volumetric_for_width_sensor ( const int8_t encoded_ratio ) {
// Reconstitute the nominal/measured ratio
const float nom_meas_ratio = 1.0 + 0.01 * encoded_ratio ,
ratio_2 = sq ( nom_meas_ratio ) ;
volumetric_multiplier [ FILAMENT_SENSOR_EXTRUDER_NUM ] = parser . volumetric_enabled
? ratio_2 / CIRCLE_AREA ( filament_width_nominal * 0.5 ) // Volumetric uses a true volumetric multiplier
: ratio_2 ; // Linear squares the ratio, which scales the volume
refresh_e_factor ( FILAMENT_SENSOR_EXTRUDER_NUM ) ;
}
# endif
2018-05-08 18:10:33 +02:00
# if PLANNER_LEVELING || HAS_UBL_AND_CURVES
2016-10-06 10:56:05 +02:00
/**
2017-11-30 23:51:21 +01:00
* rx , ry , rz - Cartesian positions in mm
2017-12-03 06:46:49 +01:00
* Leveled XYZ on completion
2016-10-06 10:56:05 +02:00
*/
2017-11-03 02:17:51 +01:00
void Planner : : apply_leveling ( float & rx , float & ry , float & rz ) {
2016-09-23 01:57:04 +02:00
2017-11-05 01:21:41 +01:00
# if ENABLED(SKEW_CORRECTION)
2017-12-09 11:55:02 +01:00
skew ( rx , ry , rz ) ;
2017-11-05 01:21:41 +01:00
# endif
2017-10-13 23:16:32 +02:00
if ( ! leveling_active ) return ;
2016-09-23 01:57:04 +02:00
2017-11-30 23:51:21 +01:00
# if ABL_PLANAR
2017-10-13 23:16:32 +02:00
2017-11-03 02:17:51 +01:00
float dx = rx - ( X_TILT_FULCRUM ) ,
dy = ry - ( Y_TILT_FULCRUM ) ;
2016-09-12 04:40:44 +02:00
2017-11-03 02:17:51 +01:00
apply_rotation_xyz ( bed_level_matrix , dx , dy , rz ) ;
2016-09-12 04:40:44 +02:00
2017-11-03 02:17:51 +01:00
rx = dx + X_TILT_FULCRUM ;
ry = dy + Y_TILT_FULCRUM ;
2016-09-12 04:40:44 +02:00
2018-04-05 01:27:09 +02:00
# elif HAS_MESH
2017-05-12 05:33:47 +02:00
2017-10-13 23:16:32 +02:00
# if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
2017-11-30 23:51:21 +01:00
const float fade_scaling_factor = fade_scaling_factor_for_z ( rz ) ;
2018-04-05 01:27:09 +02:00
# else
2017-11-30 23:51:21 +01:00
constexpr float fade_scaling_factor = 1.0 ;
# endif
2017-05-12 05:33:47 +02:00
2017-11-30 23:51:21 +01:00
# if ENABLED(AUTO_BED_LEVELING_BILINEAR)
const float raw [ XYZ ] = { rx , ry , 0 } ;
# endif
2017-05-12 05:33:47 +02:00
2017-11-30 23:51:21 +01:00
rz + = (
2018-04-05 01:27:09 +02:00
# if ENABLED(MESH_BED_LEVELING)
2017-11-30 23:51:21 +01:00
mbl . get_z ( rx , ry
# if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
, fade_scaling_factor
# endif
)
2018-04-05 01:27:09 +02:00
# elif ENABLED(AUTO_BED_LEVELING_UBL)
fade_scaling_factor ? fade_scaling_factor * ubl . get_z_correction ( rx , ry ) : 0.0
2017-11-30 23:51:21 +01:00
# elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
2018-04-05 01:27:09 +02:00
fade_scaling_factor ? fade_scaling_factor * bilinear_z_offset ( raw ) : 0.0
2017-11-30 23:51:21 +01:00
# endif
) ;
2017-05-12 05:33:47 +02:00
# endif
2017-11-30 23:51:21 +01:00
}
2017-05-12 05:33:47 +02:00
2018-05-08 18:10:33 +02:00
# endif
# if PLANNER_LEVELING
2017-11-30 23:51:21 +01:00
void Planner : : unapply_leveling ( float raw [ XYZ ] ) {
2016-08-21 10:10:55 +02:00
2018-04-05 01:27:09 +02:00
if ( leveling_active ) {
2016-08-21 10:10:55 +02:00
2017-11-05 01:21:41 +01:00
# if ABL_PLANAR
2016-08-21 10:10:55 +02:00
2017-11-05 01:21:41 +01:00
matrix_3x3 inverse = matrix_3x3 : : transpose ( bed_level_matrix ) ;
2016-08-21 10:10:55 +02:00
2017-11-05 01:21:41 +01:00
float dx = raw [ X_AXIS ] - ( X_TILT_FULCRUM ) ,
dy = raw [ Y_AXIS ] - ( Y_TILT_FULCRUM ) ;
2016-09-12 04:40:44 +02:00
2017-11-05 01:21:41 +01:00
apply_rotation_xyz ( inverse , dx , dy , raw [ Z_AXIS ] ) ;
2016-08-21 10:10:55 +02:00
2017-11-05 01:21:41 +01:00
raw [ X_AXIS ] = dx + X_TILT_FULCRUM ;
raw [ Y_AXIS ] = dy + Y_TILT_FULCRUM ;
2016-09-15 07:20:30 +02:00
2018-04-05 01:27:09 +02:00
# elif HAS_MESH
# if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
const float fade_scaling_factor = fade_scaling_factor_for_z ( raw [ Z_AXIS ] ) ;
# else
constexpr float fade_scaling_factor = 1.0 ;
# endif
2016-09-15 07:20:30 +02:00
2017-11-05 01:21:41 +01:00
raw [ Z_AXIS ] - = (
2018-04-05 01:27:09 +02:00
# if ENABLED(MESH_BED_LEVELING)
2017-11-05 01:21:41 +01:00
mbl . get_z ( raw [ X_AXIS ] , raw [ Y_AXIS ]
# if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
, fade_scaling_factor
# endif
)
2018-04-05 01:27:09 +02:00
# elif ENABLED(AUTO_BED_LEVELING_UBL)
fade_scaling_factor ? fade_scaling_factor * ubl . get_z_correction ( raw [ X_AXIS ] , raw [ Y_AXIS ] ) : 0.0
2017-11-05 01:21:41 +01:00
# elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
2018-04-05 01:27:09 +02:00
fade_scaling_factor ? fade_scaling_factor * bilinear_z_offset ( raw ) : 0.0
2017-11-05 01:21:41 +01:00
# endif
) ;
2018-04-05 01:27:09 +02:00
# endif
2017-11-05 01:21:41 +01:00
}
2017-11-30 23:51:21 +01:00
2017-11-05 01:21:41 +01:00
# if ENABLED(SKEW_CORRECTION)
2017-12-09 11:55:02 +01:00
unskew ( raw [ X_AXIS ] , raw [ Y_AXIS ] , raw [ Z_AXIS ] ) ;
2016-08-21 10:10:55 +02:00
# endif
}
2017-05-01 23:13:09 +02:00
# endif // PLANNER_LEVELING
2016-08-21 10:10:55 +02:00
2016-04-28 03:06:32 +02:00
/**
2017-12-01 00:42:02 +01:00
* Planner : : _buffer_steps
2016-04-28 03:06:32 +02:00
*
2017-12-01 00:42:02 +01:00
* Add a new linear movement to the buffer ( in terms of steps ) .
2016-10-09 20:25:25 +02:00
*
2017-12-01 00:42:02 +01:00
* target - target position in steps units
* fr_mm_s - ( target ) speed of the move
* extruder - target extruder
2016-04-28 03:06:32 +02:00
*/
2018-02-23 07:53:41 +01:00
void Planner : : _buffer_steps ( const int32_t ( & target ) [ XYZE ]
2018-04-04 03:59:29 +02:00
# if HAS_POSITION_FLOAT
2018-02-23 07:53:41 +01:00
, const float ( & target_float ) [ XYZE ]
# endif
, float fr_mm_s , const uint8_t extruder , const float & millimeters /*=0.0*/
) {
2016-12-04 05:02:27 +01:00
2018-02-03 01:49:32 +01:00
const int32_t da = target [ A_AXIS ] - position [ A_AXIS ] ,
db = target [ B_AXIS ] - position [ B_AXIS ] ,
dc = target [ C_AXIS ] - position [ C_AXIS ] ;
2015-06-29 22:26:09 +02:00
2017-12-01 00:42:02 +01:00
int32_t de = target [ E_AXIS ] - position [ E_AXIS ] ;
/* <-- add a slash to enable
SERIAL_ECHOPAIR ( " _buffer_steps FR: " , fr_mm_s ) ;
SERIAL_ECHOPAIR ( " A: " , target [ A_AXIS ] ) ;
2016-10-09 20:25:25 +02:00
SERIAL_ECHOPAIR ( " ( " , da ) ;
2017-12-01 00:42:02 +01:00
SERIAL_ECHOPAIR ( " steps) B: " , target [ B_AXIS ] ) ;
SERIAL_ECHOPAIR ( " ( " , db ) ;
SERIAL_ECHOPAIR ( " steps) C: " , target [ C_AXIS ] ) ;
SERIAL_ECHOPAIR ( " ( " , dc ) ;
SERIAL_ECHOPAIR ( " steps) E: " , target [ E_AXIS ] ) ;
SERIAL_ECHOPAIR ( " ( " , de ) ;
SERIAL_ECHOLNPGM ( " steps) " ) ;
2016-08-28 03:06:51 +02:00
//*/
2018-02-23 07:53:41 +01:00
# if ENABLED(PREVENT_COLD_EXTRUSION) || ENABLED(PREVENT_LENGTHY_EXTRUDE)
2015-03-21 04:42:49 +01:00
if ( de ) {
2017-11-10 08:32:48 +01:00
# if ENABLED(PREVENT_COLD_EXTRUSION)
if ( thermalManager . tooColdToExtrude ( extruder ) ) {
position [ E_AXIS ] = target [ E_AXIS ] ; // Behave as if the move really took place, but ignore E part
2018-04-04 03:59:29 +02:00
# if HAS_POSITION_FLOAT
2018-02-23 07:53:41 +01:00
position_float [ E_AXIS ] = target_float [ E_AXIS ] ;
# endif
2017-11-10 08:32:48 +01:00
de = 0 ; // no difference
SERIAL_ECHO_START ( ) ;
SERIAL_ECHOLNPGM ( MSG_ERR_COLD_EXTRUDE_STOP ) ;
}
# endif // PREVENT_COLD_EXTRUSION
2015-07-31 07:30:29 +02:00
# if ENABLED(PREVENT_LENGTHY_EXTRUDE)
2017-11-10 09:38:53 +01:00
if ( labs ( de * e_factor [ extruder ] ) > ( int32_t ) axis_steps_per_mm [ E_AXIS_N ] * ( EXTRUDE_MAXLENGTH ) ) { // It's not important to get max. extrusion length in a precision < 1mm, so save some cycles and cast to int
2015-03-21 04:42:49 +01:00
position [ E_AXIS ] = target [ E_AXIS ] ; // Behave as if the move really took place, but ignore E part
2018-04-04 03:59:29 +02:00
# if HAS_POSITION_FLOAT
2018-02-23 07:53:41 +01:00
position_float [ E_AXIS ] = target_float [ E_AXIS ] ;
# endif
2015-04-08 05:01:08 +02:00
de = 0 ; // no difference
2017-06-09 17:51:23 +02:00
SERIAL_ECHO_START ( ) ;
2015-03-21 04:42:49 +01:00
SERIAL_ECHOLNPGM ( MSG_ERR_LONG_EXTRUDE_STOP ) ;
}
2017-11-10 08:32:48 +01:00
# endif // PREVENT_LENGTHY_EXTRUDE
2012-11-12 15:49:40 +01:00
}
2018-02-23 07:53:41 +01:00
# endif // PREVENT_COLD_EXTRUSION || PREVENT_LENGTHY_EXTRUDE
2012-06-11 17:33:42 +02:00
2016-10-30 22:07:23 +01:00
// Compute direction bit-mask for this block
uint8_t dm = 0 ;
2016-11-06 05:47:38 +01:00
# if CORE_IS_XY
if ( da < 0 ) SBI ( dm , X_HEAD ) ; // Save the real Extruder (head) direction in X Axis
if ( db < 0 ) SBI ( dm , Y_HEAD ) ; // ...and Y
2016-10-30 22:07:23 +01:00
if ( dc < 0 ) SBI ( dm , Z_AXIS ) ;
2016-11-06 05:47:38 +01:00
if ( da + db < 0 ) SBI ( dm , A_AXIS ) ; // Motor A direction
if ( CORESIGN ( da - db ) < 0 ) SBI ( dm , B_AXIS ) ; // Motor B direction
# elif CORE_IS_XZ
if ( da < 0 ) SBI ( dm , X_HEAD ) ; // Save the real Extruder (head) direction in X Axis
2016-10-30 22:07:23 +01:00
if ( db < 0 ) SBI ( dm , Y_AXIS ) ;
2016-11-06 05:47:38 +01:00
if ( dc < 0 ) SBI ( dm , Z_HEAD ) ; // ...and Z
if ( da + dc < 0 ) SBI ( dm , A_AXIS ) ; // Motor A direction
if ( CORESIGN ( da - dc ) < 0 ) SBI ( dm , C_AXIS ) ; // Motor C direction
# elif CORE_IS_YZ
2016-10-30 22:07:23 +01:00
if ( da < 0 ) SBI ( dm , X_AXIS ) ;
2016-11-06 05:47:38 +01:00
if ( db < 0 ) SBI ( dm , Y_HEAD ) ; // Save the real Extruder (head) direction in Y Axis
if ( dc < 0 ) SBI ( dm , Z_HEAD ) ; // ...and Z
if ( db + dc < 0 ) SBI ( dm , B_AXIS ) ; // Motor B direction
if ( CORESIGN ( db - dc ) < 0 ) SBI ( dm , C_AXIS ) ; // Motor C direction
2016-10-30 22:07:23 +01:00
# else
if ( da < 0 ) SBI ( dm , X_AXIS ) ;
if ( db < 0 ) SBI ( dm , Y_AXIS ) ;
if ( dc < 0 ) SBI ( dm , Z_AXIS ) ;
# endif
if ( de < 0 ) SBI ( dm , E_AXIS ) ;
2017-11-10 09:38:53 +01:00
const float esteps_float = de * e_factor [ extruder ] ;
2016-12-09 07:51:56 +01:00
const int32_t esteps = abs ( esteps_float ) + 0.5 ;
2016-10-30 22:07:23 +01:00
2018-05-04 03:23:35 +02:00
// Wait for the next available block
uint8_t next_buffer_head ;
block_t * const block = get_next_free_block ( next_buffer_head ) ;
2012-06-11 17:33:42 +02:00
2016-10-30 22:05:14 +01:00
// Clear all flags, including the "busy" bit
2017-12-08 05:38:40 +01:00
block - > flag = 0x00 ;
2011-11-15 22:50:43 +01:00
2016-10-30 22:07:23 +01:00
// Set direction bits
block - > direction_bits = dm ;
2011-11-15 22:50:43 +01:00
// Number of steps for each axis
2016-11-06 05:47:38 +01:00
// See http://www.corexy.com/theory.html
# if CORE_IS_XY
2016-10-09 20:25:25 +02:00
block - > steps [ A_AXIS ] = labs ( da + db ) ;
block - > steps [ B_AXIS ] = labs ( da - db ) ;
block - > steps [ Z_AXIS ] = labs ( dc ) ;
2016-11-06 05:47:38 +01:00
# elif CORE_IS_XZ
2016-10-09 20:25:25 +02:00
block - > steps [ A_AXIS ] = labs ( da + dc ) ;
block - > steps [ Y_AXIS ] = labs ( db ) ;
block - > steps [ C_AXIS ] = labs ( da - dc ) ;
2016-11-06 05:47:38 +01:00
# elif CORE_IS_YZ
2016-10-09 20:25:25 +02:00
block - > steps [ X_AXIS ] = labs ( da ) ;
block - > steps [ B_AXIS ] = labs ( db + dc ) ;
block - > steps [ C_AXIS ] = labs ( db - dc ) ;
2018-04-04 03:59:29 +02:00
# elif IS_SCARA
block - > steps [ A_AXIS ] = labs ( da ) ;
block - > steps [ B_AXIS ] = labs ( db ) ;
block - > steps [ Z_AXIS ] = labs ( dc ) ;
2015-03-21 04:42:49 +01:00
# else
// default non-h-bot planning
2018-02-03 01:49:32 +01:00
block - > steps [ A_AXIS ] = labs ( da ) ;
block - > steps [ B_AXIS ] = labs ( db ) ;
block - > steps [ C_AXIS ] = labs ( dc ) ;
2015-03-21 04:42:49 +01:00
# endif
2016-10-30 22:07:23 +01:00
block - > steps [ E_AXIS ] = esteps ;
2018-02-03 01:49:32 +01:00
block - > step_event_count = MAX4 ( block - > steps [ A_AXIS ] , block - > steps [ B_AXIS ] , block - > steps [ C_AXIS ] , esteps ) ;
2011-11-15 22:50:43 +01:00
// Bail if this is a zero-length block
2016-08-21 15:56:03 +02:00
if ( block - > step_event_count < MIN_STEPS_PER_SEGMENT ) return ;
2011-11-15 22:50:43 +01:00
2016-06-29 00:06:56 +02:00
// For a mixing extruder, get a magnified step_event_count for each
# if ENABLED(MIXING_EXTRUDER)
for ( uint8_t i = 0 ; i < MIXING_STEPPERS ; i + + )
2016-11-12 21:33:07 +01:00
block - > mix_event_count [ i ] = mixing_factor [ i ] * block - > step_event_count ;
2016-06-29 00:06:56 +02:00
# endif
2016-03-06 03:27:45 +01:00
# if FAN_COUNT > 0
for ( uint8_t i = 0 ; i < FAN_COUNT ; i + + ) block - > fan_speed [ i ] = fanSpeeds [ i ] ;
# endif
2015-07-31 07:30:29 +02:00
# if ENABLED(BARICUDA)
2016-04-18 08:12:15 +02:00
block - > valve_pressure = baricuda_valve_pressure ;
block - > e_to_p_pressure = baricuda_e_to_p_pressure ;
2013-05-14 23:56:32 +02:00
# endif
2012-06-11 17:33:42 +02:00
2011-12-02 17:45:05 +01:00
block - > active_extruder = extruder ;
2012-06-11 17:33:42 +02:00
2017-02-20 22:07:23 +01:00
# if ENABLED(AUTO_POWER_CONTROL)
if ( block - > steps [ X_AXIS ] | | block - > steps [ Y_AXIS ] | | block - > steps [ Z_AXIS ] )
2018-03-09 01:56:41 +01:00
powerManager . power_on ( ) ;
2017-02-20 22:07:23 +01:00
# endif
2018-04-04 03:59:29 +02:00
// Enable active axes
2016-11-06 05:47:38 +01:00
# if CORE_IS_XY
2015-03-21 04:42:49 +01:00
if ( block - > steps [ A_AXIS ] | | block - > steps [ B_AXIS ] ) {
2017-04-11 18:10:26 +02:00
enable_X ( ) ;
enable_Y ( ) ;
2015-03-21 04:42:49 +01:00
}
2015-08-03 21:30:37 +02:00
# if DISABLED(Z_LATE_ENABLE)
2017-04-11 18:10:26 +02:00
if ( block - > steps [ Z_AXIS ] ) enable_Z ( ) ;
2015-06-16 02:34:04 +02:00
# endif
2016-11-06 05:47:38 +01:00
# elif CORE_IS_XZ
2015-06-16 02:36:41 +02:00
if ( block - > steps [ A_AXIS ] | | block - > steps [ C_AXIS ] ) {
2017-04-11 18:10:26 +02:00
enable_X ( ) ;
enable_Z ( ) ;
2015-06-16 02:36:41 +02:00
}
2017-04-11 18:10:26 +02:00
if ( block - > steps [ Y_AXIS ] ) enable_Y ( ) ;
2016-11-06 05:47:38 +01:00
# elif CORE_IS_YZ
2016-10-30 22:07:45 +01:00
if ( block - > steps [ B_AXIS ] | | block - > steps [ C_AXIS ] ) {
2017-04-11 18:10:26 +02:00
enable_Y ( ) ;
enable_Z ( ) ;
2016-10-30 22:07:45 +01:00
}
2017-04-11 18:10:26 +02:00
if ( block - > steps [ X_AXIS ] ) enable_X ( ) ;
2013-05-05 19:23:59 +02:00
# else
2017-04-11 18:10:26 +02:00
if ( block - > steps [ X_AXIS ] ) enable_X ( ) ;
if ( block - > steps [ Y_AXIS ] ) enable_Y ( ) ;
2015-08-03 21:30:37 +02:00
# if DISABLED(Z_LATE_ENABLE)
2017-04-11 18:10:26 +02:00
if ( block - > steps [ Z_AXIS ] ) enable_Z ( ) ;
2015-06-16 02:34:04 +02:00
# endif
2013-05-05 19:23:59 +02:00
# endif
2011-12-06 05:33:33 +01:00
2014-06-02 08:13:09 +02:00
// Enable extruder(s)
2016-10-30 22:07:23 +01:00
if ( esteps ) {
2017-02-20 22:07:23 +01:00
# if ENABLED(AUTO_POWER_CONTROL)
powerManager . power_on ( ) ;
# endif
2016-04-28 03:06:32 +02:00
# if ENABLED(DISABLE_INACTIVE_EXTRUDER) // Enable only the selected extruder
2014-07-13 21:52:32 +02:00
2017-05-01 19:20:25 +02:00
# define DISABLE_IDLE_E(N) if (!g_uc_extruder_last_move[N]) disable_E##N();
2016-12-09 07:51:56 +01:00
for ( uint8_t i = 0 ; i < EXTRUDERS ; i + + )
2015-03-21 04:42:49 +01:00
if ( g_uc_extruder_last_move [ i ] > 0 ) g_uc_extruder_last_move [ i ] - - ;
2015-08-11 18:38:26 +02:00
2018-03-30 22:10:03 +02:00
switch ( extruder ) {
2015-03-21 04:42:49 +01:00
case 0 :
# if EXTRUDERS > 1
2017-05-01 19:20:25 +02:00
DISABLE_IDLE_E ( 1 ) ;
2015-03-21 04:42:49 +01:00
# if EXTRUDERS > 2
2017-05-01 19:20:25 +02:00
DISABLE_IDLE_E ( 2 ) ;
2015-03-21 04:42:49 +01:00
# if EXTRUDERS > 3
2017-05-01 19:20:25 +02:00
DISABLE_IDLE_E ( 3 ) ;
2017-04-06 23:46:52 +02:00
# if EXTRUDERS > 4
2017-05-01 19:20:25 +02:00
DISABLE_IDLE_E ( 4 ) ;
2017-04-06 23:46:52 +02:00
# endif // EXTRUDERS > 4
# endif // EXTRUDERS > 3
# endif // EXTRUDERS > 2
# endif // EXTRUDERS > 1
2018-03-30 22:10:03 +02:00
enable_E0 ( ) ;
g_uc_extruder_last_move [ 0 ] = ( BLOCK_BUFFER_SIZE ) * 2 ;
# if ENABLED(DUAL_X_CARRIAGE) || ENABLED(DUAL_NOZZLE_DUPLICATION_MODE)
if ( extruder_duplication_enabled ) {
enable_E1 ( ) ;
g_uc_extruder_last_move [ 1 ] = ( BLOCK_BUFFER_SIZE ) * 2 ;
}
# endif
2014-07-13 21:52:32 +02:00
break ;
2015-03-21 04:42:49 +01:00
# if EXTRUDERS > 1
case 1 :
2017-05-01 19:20:25 +02:00
DISABLE_IDLE_E ( 0 ) ;
2015-03-21 04:42:49 +01:00
# if EXTRUDERS > 2
2017-05-01 19:20:25 +02:00
DISABLE_IDLE_E ( 2 ) ;
2015-03-21 04:42:49 +01:00
# if EXTRUDERS > 3
2017-05-01 19:20:25 +02:00
DISABLE_IDLE_E ( 3 ) ;
2017-04-06 23:46:52 +02:00
# if EXTRUDERS > 4
2017-05-01 19:20:25 +02:00
DISABLE_IDLE_E ( 4 ) ;
2017-04-06 23:46:52 +02:00
# endif // EXTRUDERS > 4
# endif // EXTRUDERS > 3
# endif // EXTRUDERS > 2
2018-03-30 22:10:03 +02:00
enable_E1 ( ) ;
g_uc_extruder_last_move [ 1 ] = ( BLOCK_BUFFER_SIZE ) * 2 ;
2015-03-21 04:42:49 +01:00
break ;
# if EXTRUDERS > 2
case 2 :
2017-05-01 19:20:25 +02:00
DISABLE_IDLE_E ( 0 ) ;
DISABLE_IDLE_E ( 1 ) ;
2015-03-21 04:42:49 +01:00
# if EXTRUDERS > 3
2017-05-01 19:20:25 +02:00
DISABLE_IDLE_E ( 3 ) ;
2017-04-06 23:46:52 +02:00
# if EXTRUDERS > 4
2017-05-01 19:20:25 +02:00
DISABLE_IDLE_E ( 4 ) ;
2017-04-06 23:46:52 +02:00
# endif
2015-03-21 04:42:49 +01:00
# endif
2018-03-30 22:10:03 +02:00
enable_E2 ( ) ;
g_uc_extruder_last_move [ 2 ] = ( BLOCK_BUFFER_SIZE ) * 2 ;
2015-03-21 04:42:49 +01:00
break ;
# if EXTRUDERS > 3
case 3 :
2017-05-01 19:20:25 +02:00
DISABLE_IDLE_E ( 0 ) ;
DISABLE_IDLE_E ( 1 ) ;
DISABLE_IDLE_E ( 2 ) ;
2017-04-06 23:46:52 +02:00
# if EXTRUDERS > 4
2017-05-01 19:20:25 +02:00
DISABLE_IDLE_E ( 4 ) ;
2017-04-06 23:46:52 +02:00
# endif
2018-03-30 22:10:03 +02:00
enable_E3 ( ) ;
g_uc_extruder_last_move [ 3 ] = ( BLOCK_BUFFER_SIZE ) * 2 ;
2015-03-21 04:42:49 +01:00
break ;
2017-04-06 23:46:52 +02:00
# if EXTRUDERS > 4
case 4 :
2017-05-01 19:20:25 +02:00
DISABLE_IDLE_E ( 0 ) ;
DISABLE_IDLE_E ( 1 ) ;
DISABLE_IDLE_E ( 2 ) ;
DISABLE_IDLE_E ( 3 ) ;
2018-03-30 22:10:03 +02:00
enable_E4 ( ) ;
g_uc_extruder_last_move [ 4 ] = ( BLOCK_BUFFER_SIZE ) * 2 ;
2017-04-06 23:46:52 +02:00
break ;
# endif // EXTRUDERS > 4
2015-03-21 04:42:49 +01:00
# endif // EXTRUDERS > 3
# endif // EXTRUDERS > 2
# endif // EXTRUDERS > 1
2014-06-02 08:13:09 +02:00
}
2016-04-28 03:06:32 +02:00
# else
2017-04-11 18:10:26 +02:00
enable_E0 ( ) ;
enable_E1 ( ) ;
enable_E2 ( ) ;
enable_E3 ( ) ;
enable_E4 ( ) ;
2016-04-28 03:06:32 +02:00
# endif
2012-06-11 17:33:42 +02:00
}
2011-12-06 05:33:33 +01:00
2016-10-30 22:07:23 +01:00
if ( esteps )
2016-07-16 03:49:34 +02:00
NOLESS ( fr_mm_s , min_feedrate_mm_s ) ;
2015-04-13 03:07:08 +02:00
else
2016-07-16 03:49:34 +02:00
NOLESS ( fr_mm_s , min_travel_feedrate_mm_s ) ;
2012-06-11 17:33:42 +02:00
2015-03-21 04:42:49 +01:00
/**
2015-08-11 18:38:26 +02:00
* This part of the code calculates the total length of the movement .
2015-03-21 04:42:49 +01:00
* For cartesian bots , the X_AXIS is the real X movement and same for Y_AXIS .
* But for corexy bots , that is not true . The " X_AXIS " and " Y_AXIS " motors ( that should be named to A_AXIS
* and B_AXIS ) cannot be used for X and Y length , because A = X + Y and B = X - Y .
2015-08-11 18:38:26 +02:00
* So we need to create other 2 " AXIS " , named X_HEAD and Y_HEAD , meaning the real displacement of the Head .
2015-03-21 04:42:49 +01:00
* Having the real displacement of the head , we can calculate the total movement length and apply the desired speed .
2015-08-11 18:38:26 +02:00
*/
2016-11-06 05:47:38 +01:00
# if IS_CORE
2016-11-12 01:11:04 +01:00
float delta_mm [ Z_HEAD + 1 ] ;
2016-11-06 05:47:38 +01:00
# if CORE_IS_XY
2016-10-09 20:25:25 +02:00
delta_mm [ X_HEAD ] = da * steps_to_mm [ A_AXIS ] ;
delta_mm [ Y_HEAD ] = db * steps_to_mm [ B_AXIS ] ;
delta_mm [ Z_AXIS ] = dc * steps_to_mm [ Z_AXIS ] ;
delta_mm [ A_AXIS ] = ( da + db ) * steps_to_mm [ A_AXIS ] ;
2016-11-06 05:47:38 +01:00
delta_mm [ B_AXIS ] = CORESIGN ( da - db ) * steps_to_mm [ B_AXIS ] ;
# elif CORE_IS_XZ
2016-10-09 20:25:25 +02:00
delta_mm [ X_HEAD ] = da * steps_to_mm [ A_AXIS ] ;
delta_mm [ Y_AXIS ] = db * steps_to_mm [ Y_AXIS ] ;
delta_mm [ Z_HEAD ] = dc * steps_to_mm [ C_AXIS ] ;
delta_mm [ A_AXIS ] = ( da + dc ) * steps_to_mm [ A_AXIS ] ;
2016-11-06 05:47:38 +01:00
delta_mm [ C_AXIS ] = CORESIGN ( da - dc ) * steps_to_mm [ C_AXIS ] ;
# elif CORE_IS_YZ
2016-10-09 20:25:25 +02:00
delta_mm [ X_AXIS ] = da * steps_to_mm [ X_AXIS ] ;
delta_mm [ Y_HEAD ] = db * steps_to_mm [ B_AXIS ] ;
delta_mm [ Z_HEAD ] = dc * steps_to_mm [ C_AXIS ] ;
delta_mm [ B_AXIS ] = ( db + dc ) * steps_to_mm [ B_AXIS ] ;
2016-11-06 05:47:38 +01:00
delta_mm [ C_AXIS ] = CORESIGN ( db - dc ) * steps_to_mm [ C_AXIS ] ;
2016-05-20 22:27:49 +02:00
# endif
2015-03-21 04:42:49 +01:00
# else
2018-02-03 01:49:32 +01:00
float delta_mm [ ABCE ] ;
delta_mm [ A_AXIS ] = da * steps_to_mm [ A_AXIS ] ;
delta_mm [ B_AXIS ] = db * steps_to_mm [ B_AXIS ] ;
delta_mm [ C_AXIS ] = dc * steps_to_mm [ C_AXIS ] ;
2013-06-09 13:10:06 +02:00
# endif
2016-12-04 05:02:27 +01:00
delta_mm [ E_AXIS ] = esteps_float * steps_to_mm [ E_AXIS_N ] ;
2015-03-21 04:42:49 +01:00
2018-02-03 01:49:32 +01:00
if ( block - > steps [ A_AXIS ] < MIN_STEPS_PER_SEGMENT & & block - > steps [ B_AXIS ] < MIN_STEPS_PER_SEGMENT & & block - > steps [ C_AXIS ] < MIN_STEPS_PER_SEGMENT ) {
2017-06-20 05:39:23 +02:00
block - > millimeters = FABS ( delta_mm [ E_AXIS ] ) ;
2015-08-11 18:38:26 +02:00
}
2018-02-03 01:49:32 +01:00
else if ( ! millimeters ) {
2017-06-20 05:39:23 +02:00
block - > millimeters = SQRT (
2016-11-06 05:47:38 +01:00
# if CORE_IS_XY
2016-07-16 03:50:25 +02:00
sq ( delta_mm [ X_HEAD ] ) + sq ( delta_mm [ Y_HEAD ] ) + sq ( delta_mm [ Z_AXIS ] )
2016-11-06 05:47:38 +01:00
# elif CORE_IS_XZ
2016-07-16 03:50:25 +02:00
sq ( delta_mm [ X_HEAD ] ) + sq ( delta_mm [ Y_AXIS ] ) + sq ( delta_mm [ Z_HEAD ] )
2016-11-06 05:47:38 +01:00
# elif CORE_IS_YZ
2016-07-16 03:50:25 +02:00
sq ( delta_mm [ X_AXIS ] ) + sq ( delta_mm [ Y_HEAD ] ) + sq ( delta_mm [ Z_HEAD ] )
2015-03-21 04:42:49 +01:00
# else
2016-07-16 03:50:25 +02:00
sq ( delta_mm [ X_AXIS ] ) + sq ( delta_mm [ Y_AXIS ] ) + sq ( delta_mm [ Z_AXIS ] )
2015-03-21 04:42:49 +01:00
# endif
2016-07-29 01:26:52 +02:00
) ;
2012-02-09 19:53:06 +01:00
}
2018-02-03 01:49:32 +01:00
else
block - > millimeters = millimeters ;
2017-12-09 02:19:13 +01:00
const float inverse_millimeters = 1.0 / block - > millimeters ; // Inverse millimeters to remove multiple divides
2012-06-11 17:33:42 +02:00
2017-12-03 03:12:35 +01:00
// Calculate inverse time for this move. No divide by zero due to previous checks.
// Example: At 120mm/s a 60mm move takes 0.5s. So this will give 2.0.
float inverse_secs = fr_mm_s * inverse_millimeters ;
2012-06-11 17:33:42 +02:00
2016-12-09 07:51:56 +01:00
const uint8_t moves_queued = movesplanned ( ) ;
2012-06-11 17:33:42 +02:00
2015-03-27 08:32:58 +01:00
// Slow down when the buffer starts to empty, rather than wait at the corner for a buffer refill
2016-12-15 16:43:07 +01:00
# if ENABLED(SLOWDOWN) || ENABLED(ULTRA_LCD) || defined(XY_FREQUENCY_LIMIT)
2016-11-12 01:11:04 +01:00
// Segment time im micro seconds
2017-12-03 03:12:35 +01:00
uint32_t segment_time_us = LROUND ( 1000000.0 / inverse_secs ) ;
2016-12-15 16:43:07 +01:00
# endif
2017-12-01 00:42:02 +01:00
2016-11-02 07:28:19 +01:00
# if ENABLED(SLOWDOWN)
2017-03-31 16:00:49 +02:00
if ( WITHIN ( moves_queued , 2 , ( BLOCK_BUFFER_SIZE ) / 2 - 1 ) ) {
2017-10-14 22:47:53 +02:00
if ( segment_time_us < min_segment_time_us ) {
2016-11-02 07:28:19 +01:00
// buffer is draining, add extra time. The amount of time added increases if the buffer is still emptied more.
2017-11-29 21:59:46 +01:00
const uint32_t nst = segment_time_us + LROUND ( 2 * ( min_segment_time_us - segment_time_us ) / moves_queued ) ;
2017-12-03 03:12:35 +01:00
inverse_secs = 1000000.0 / nst ;
2016-12-12 14:35:02 +01:00
# if defined(XY_FREQUENCY_LIMIT) || ENABLED(ULTRA_LCD)
2017-11-29 21:59:46 +01:00
segment_time_us = nst ;
2016-11-02 07:28:19 +01:00
# endif
2015-03-21 04:42:49 +01:00
}
2016-11-02 07:28:19 +01:00
}
2015-03-21 04:42:49 +01:00
# endif
2016-12-12 14:35:02 +01:00
# if ENABLED(ULTRA_LCD)
2016-12-09 14:10:55 +01:00
CRITICAL_SECTION_START
2017-10-14 22:47:53 +02:00
block_buffer_runtime_us + = segment_time_us ;
2016-12-09 14:10:55 +01:00
CRITICAL_SECTION_END
2016-11-11 18:15:39 +01:00
# endif
2011-11-15 22:50:43 +01:00
2017-12-20 22:59:20 +01:00
block - > nominal_speed = block - > millimeters * inverse_secs ; // (mm/sec) Always > 0
block - > nominal_rate = CEIL ( block - > step_event_count * inverse_secs ) ; // (step/sec) Always > 0
2016-03-30 05:28:23 +02:00
# if ENABLED(FILAMENT_WIDTH_SENSOR)
2016-04-07 04:29:08 +02:00
static float filwidth_e_count = 0 , filwidth_delay_dist = 0 ;
2015-03-21 04:42:49 +01:00
//FMM update ring buffer used for delay with filament measurements
2016-09-06 06:57:12 +02:00
if ( extruder = = FILAMENT_SENSOR_EXTRUDER_NUM & & filwidth_delay_index [ 1 ] > = 0 ) { //only for extruder with filament sensor and if ring buffer is initialized
2016-04-07 04:29:08 +02:00
2017-12-09 02:19:13 +01:00
constexpr int MMD_CM = MAX_MEASUREMENT_DELAY + 1 , MMD_MM = MMD_CM * 10 ;
2016-04-07 04:29:08 +02:00
// increment counters with next move in e axis
filwidth_e_count + = delta_mm [ E_AXIS ] ;
filwidth_delay_dist + = delta_mm [ E_AXIS ] ;
2015-03-21 04:42:49 +01:00
2016-04-07 04:29:08 +02:00
// Only get new measurements on forward E movement
2017-11-29 21:59:46 +01:00
if ( ! UNEAR_ZERO ( filwidth_e_count ) ) {
2015-03-21 04:42:49 +01:00
2016-04-07 04:29:08 +02:00
// Loop the delay distance counter (modulus by the mm length)
while ( filwidth_delay_dist > = MMD_MM ) filwidth_delay_dist - = MMD_MM ;
2014-08-07 02:30:57 +02:00
2016-04-07 04:29:08 +02:00
// Convert into an index into the measurement array
2017-06-23 21:48:02 +02:00
filwidth_delay_index [ 0 ] = int8_t ( filwidth_delay_dist * 0.1 ) ;
2015-03-21 04:42:49 +01:00
2016-04-07 04:29:08 +02:00
// If the index has changed (must have gone forward)...
2016-09-06 06:57:12 +02:00
if ( filwidth_delay_index [ 0 ] ! = filwidth_delay_index [ 1 ] ) {
2016-04-07 04:29:08 +02:00
filwidth_e_count = 0 ; // Reset the E movement counter
2017-12-20 07:13:49 +01:00
const int8_t meas_sample = thermalManager . widthFil_to_size_ratio ( ) ;
2016-04-07 04:29:08 +02:00
do {
2016-09-06 06:57:12 +02:00
filwidth_delay_index [ 1 ] = ( filwidth_delay_index [ 1 ] + 1 ) % MMD_CM ; // The next unused slot
measurement_delay [ filwidth_delay_index [ 1 ] ] = meas_sample ; // Store the measurement
} while ( filwidth_delay_index [ 0 ] ! = filwidth_delay_index [ 1 ] ) ; // More slots to fill?
2015-03-21 04:42:49 +01:00
}
}
}
# endif
2014-08-07 02:30:57 +02:00
2017-12-20 22:59:20 +01:00
// Calculate and limit speed in mm/sec for each axis
2016-10-02 11:38:17 +02:00
float current_speed [ NUM_AXIS ] , speed_factor = 1.0 ; // factor <1 decreases speed
2016-07-23 22:07:23 +02:00
LOOP_XYZE ( i ) {
2017-12-03 03:12:35 +01:00
const float cs = FABS ( ( current_speed [ i ] = delta_mm [ i ] * inverse_secs ) ) ;
2017-03-06 06:19:06 +01:00
# if ENABLED(DISTINCT_E_FACTORS)
if ( i = = E_AXIS ) i + = extruder ;
# endif
2016-10-02 11:38:17 +02:00
if ( cs > max_feedrate_mm_s [ i ] ) NOMORE ( speed_factor , max_feedrate_mm_s [ i ] / cs ) ;
2011-11-15 22:50:43 +01:00
}
2016-10-02 11:38:17 +02:00
// Max segment time in µs.
2015-03-21 04:42:49 +01:00
# ifdef XY_FREQUENCY_LIMIT
// Check and limit the xy direction change frequency
2016-12-09 07:51:56 +01:00
const unsigned char direction_change = block - > direction_bits ^ old_direction_bits ;
2015-03-21 04:42:49 +01:00
old_direction_bits = block - > direction_bits ;
2017-10-14 22:47:53 +02:00
segment_time_us = LROUND ( ( float ) segment_time_us / speed_factor ) ;
2015-08-11 18:38:26 +02:00
2017-10-14 22:47:53 +02:00
uint32_t xs0 = axis_segment_time_us [ X_AXIS ] [ 0 ] ,
xs1 = axis_segment_time_us [ X_AXIS ] [ 1 ] ,
xs2 = axis_segment_time_us [ X_AXIS ] [ 2 ] ,
ys0 = axis_segment_time_us [ Y_AXIS ] [ 0 ] ,
ys1 = axis_segment_time_us [ Y_AXIS ] [ 1 ] ,
ys2 = axis_segment_time_us [ Y_AXIS ] [ 2 ] ;
2015-03-21 04:42:49 +01:00
2016-02-27 13:51:44 +01:00
if ( TEST ( direction_change , X_AXIS ) ) {
2017-10-14 22:47:53 +02:00
xs2 = axis_segment_time_us [ X_AXIS ] [ 2 ] = xs1 ;
xs1 = axis_segment_time_us [ X_AXIS ] [ 1 ] = xs0 ;
2015-03-21 04:42:49 +01:00
xs0 = 0 ;
}
2017-10-14 22:47:53 +02:00
xs0 = axis_segment_time_us [ X_AXIS ] [ 0 ] = xs0 + segment_time_us ;
2011-11-15 22:50:43 +01:00
2016-02-27 13:51:44 +01:00
if ( TEST ( direction_change , Y_AXIS ) ) {
2017-10-14 22:47:53 +02:00
ys2 = axis_segment_time_us [ Y_AXIS ] [ 2 ] = axis_segment_time_us [ Y_AXIS ] [ 1 ] ;
ys1 = axis_segment_time_us [ Y_AXIS ] [ 1 ] = axis_segment_time_us [ Y_AXIS ] [ 0 ] ;
2015-03-21 04:42:49 +01:00
ys0 = 0 ;
}
2017-10-14 22:47:53 +02:00
ys0 = axis_segment_time_us [ Y_AXIS ] [ 0 ] = ys0 + segment_time_us ;
2015-03-21 04:42:49 +01:00
2017-10-14 22:47:53 +02:00
const uint32_t max_x_segment_time = MAX3 ( xs0 , xs1 , xs2 ) ,
max_y_segment_time = MAX3 ( ys0 , ys1 , ys2 ) ,
min_xy_segment_time = min ( max_x_segment_time , max_y_segment_time ) ;
if ( min_xy_segment_time < MAX_FREQ_TIME_US ) {
const float low_sf = speed_factor * min_xy_segment_time / ( MAX_FREQ_TIME_US ) ;
2016-10-02 11:38:17 +02:00
NOMORE ( speed_factor , low_sf ) ;
2011-11-15 22:50:43 +01:00
}
2015-03-21 04:42:49 +01:00
# endif // XY_FREQUENCY_LIMIT
2015-08-11 18:38:26 +02:00
// Correct the speed
2015-03-21 04:42:49 +01:00
if ( speed_factor < 1.0 ) {
2016-07-23 22:07:23 +02:00
LOOP_XYZE ( i ) current_speed [ i ] * = speed_factor ;
2011-11-15 22:50:43 +01:00
block - > nominal_speed * = speed_factor ;
block - > nominal_rate * = speed_factor ;
}
2015-08-11 18:38:26 +02:00
// Compute and limit the acceleration rate for the trapezoid generator.
2016-12-09 07:51:56 +01:00
const float steps_per_mm = block - > step_event_count * inverse_millimeters ;
2016-10-11 09:00:29 +02:00
uint32_t accel ;
2018-02-03 01:49:32 +01:00
if ( ! block - > steps [ A_AXIS ] & & ! block - > steps [ B_AXIS ] & & ! block - > steps [ C_AXIS ] ) {
2016-10-11 09:00:29 +02:00
// convert to: acceleration steps/sec^2
2017-06-20 05:39:23 +02:00
accel = CEIL ( retract_acceleration * steps_per_mm ) ;
2018-02-23 07:53:41 +01:00
# if ENABLED(LIN_ADVANCE)
block - > use_advance_lead = false ;
# endif
2016-07-21 04:19:47 +02:00
}
else {
2016-12-04 05:02:27 +01:00
# define LIMIT_ACCEL_LONG(AXIS,INDX) do{ \
if ( block - > steps [ AXIS ] & & max_acceleration_steps_per_s2 [ AXIS + INDX ] < accel ) { \
const uint32_t comp = max_acceleration_steps_per_s2 [ AXIS + INDX ] * block - > step_event_count ; \
2016-10-23 12:47:46 +02:00
if ( accel * block - > steps [ AXIS ] > comp ) accel = comp / block - > steps [ AXIS ] ; \
} \
} while ( 0 )
2016-12-15 16:21:32 +01:00
2016-12-04 05:02:27 +01:00
# define LIMIT_ACCEL_FLOAT(AXIS,INDX) do{ \
if ( block - > steps [ AXIS ] & & max_acceleration_steps_per_s2 [ AXIS + INDX ] < accel ) { \
const float comp = ( float ) max_acceleration_steps_per_s2 [ AXIS + INDX ] * ( float ) block - > step_event_count ; \
2016-10-23 12:47:46 +02:00
if ( ( float ) accel * ( float ) block - > steps [ AXIS ] > comp ) accel = comp / ( float ) block - > steps [ AXIS ] ; \
} \
2016-10-11 09:00:29 +02:00
} while ( 0 )
// Start with print or travel acceleration
2017-06-20 05:39:23 +02:00
accel = CEIL ( ( esteps ? acceleration : travel_acceleration ) * steps_per_mm ) ;
2016-10-11 09:00:29 +02:00
2018-02-23 07:53:41 +01:00
# if ENABLED(LIN_ADVANCE)
/**
*
* Use LIN_ADVANCE for blocks if all these are true :
*
* esteps : This is a print move , because we checked for A , B , C steps before .
*
* extruder_advance_K : There is an advance factor set .
*
* de > 0 : Extruder is running forward ( e . g . , for " Wipe while retracting " ( Slic3r ) or " Combing " ( Cura ) moves )
*/
block - > use_advance_lead = esteps
& & extruder_advance_K
& & de > 0 ;
if ( block - > use_advance_lead ) {
block - > e_D_ratio = ( target_float [ E_AXIS ] - position_float [ E_AXIS ] ) /
# if IS_KINEMATIC
block - > millimeters
# else
SQRT ( sq ( target_float [ X_AXIS ] - position_float [ X_AXIS ] )
+ sq ( target_float [ Y_AXIS ] - position_float [ Y_AXIS ] )
+ sq ( target_float [ Z_AXIS ] - position_float [ Z_AXIS ] ) )
# endif
;
// Check for unusual high e_D ratio to detect if a retract move was combined with the last print move due to min. steps per segment. Never execute this with advance!
// This assumes no one will use a retract length of 0mm < retr_length < ~0.2mm and no one will print 100mm wide lines using 3mm filament or 35mm wide lines using 1.75mm filament.
if ( block - > e_D_ratio > 3.0 )
block - > use_advance_lead = false ;
else {
const uint32_t max_accel_steps_per_s2 = max_jerk [ E_AXIS ] / ( extruder_advance_K * block - > e_D_ratio ) * steps_per_mm ;
# if ENABLED(LA_DEBUG)
if ( accel > max_accel_steps_per_s2 )
SERIAL_ECHOLNPGM ( " Acceleration limited. " ) ;
# endif
NOMORE ( accel , max_accel_steps_per_s2 ) ;
}
}
# endif
2017-03-06 06:19:06 +01:00
# if ENABLED(DISTINCT_E_FACTORS)
# define ACCEL_IDX extruder
# else
# define ACCEL_IDX 0
# endif
2016-07-21 04:19:47 +02:00
// Limit acceleration per axis
2016-12-04 05:02:27 +01:00
if ( block - > step_event_count < = cutoff_long ) {
2018-02-03 01:49:32 +01:00
LIMIT_ACCEL_LONG ( A_AXIS , 0 ) ;
LIMIT_ACCEL_LONG ( B_AXIS , 0 ) ;
LIMIT_ACCEL_LONG ( C_AXIS , 0 ) ;
2017-03-31 22:08:08 +02:00
LIMIT_ACCEL_LONG ( E_AXIS , ACCEL_IDX ) ;
2016-12-04 05:02:27 +01:00
}
else {
2018-02-03 01:49:32 +01:00
LIMIT_ACCEL_FLOAT ( A_AXIS , 0 ) ;
LIMIT_ACCEL_FLOAT ( B_AXIS , 0 ) ;
LIMIT_ACCEL_FLOAT ( C_AXIS , 0 ) ;
2017-03-31 22:08:08 +02:00
LIMIT_ACCEL_FLOAT ( E_AXIS , ACCEL_IDX ) ;
2016-10-23 12:47:46 +02:00
}
2016-07-21 04:19:47 +02:00
}
2016-10-11 09:00:29 +02:00
block - > acceleration_steps_per_s2 = accel ;
block - > acceleration = accel / steps_per_mm ;
2018-05-08 10:42:45 +02:00
# if DISABLED(BEZIER_JERK_CONTROL)
block - > acceleration_rate = ( long ) ( accel * ( 4096.0 * 4096.0 / ( HAL_STEPPER_TIMER_RATE ) ) ) ; // * 8.388608
# endif
2018-02-23 07:53:41 +01:00
# if ENABLED(LIN_ADVANCE)
if ( block - > use_advance_lead ) {
2018-05-08 10:42:45 +02:00
block - > advance_speed = ( HAL_STEPPER_TIMER_RATE ) / ( extruder_advance_K * block - > e_D_ratio * block - > acceleration * axis_steps_per_mm [ E_AXIS ] ) ;
2018-02-23 07:53:41 +01:00
# if ENABLED(LA_DEBUG)
if ( extruder_advance_K * block - > e_D_ratio * block - > acceleration * 2 < block - > nominal_speed * block - > e_D_ratio )
SERIAL_ECHOLNPGM ( " More than 2 steps per eISR loop executed. " ) ;
if ( block - > advance_speed < 200 )
SERIAL_ECHOLNPGM ( " eISR running at > 10kHz. " ) ;
# endif
}
# endif
2016-10-11 09:00:29 +02:00
2018-05-08 10:02:54 +02:00
float vmax_junction ; // Initial limit on the segment entry velocity
# if ENABLED(JUNCTION_DEVIATION)
/**
* Compute maximum allowable entry speed at junction by centripetal acceleration approximation .
* Let a circle be tangent to both previous and current path line segments , where the junction
* deviation is defined as the distance from the junction to the closest edge of the circle ,
* colinear with the circle center . The circular segment joining the two paths represents the
* path of centripetal acceleration . Solve for max velocity based on max acceleration about the
* radius of the circle , defined indirectly by junction deviation . This may be also viewed as
* path width or max_jerk in the previous Grbl version . This approach does not actually deviate
* from path , but used as a robust way to compute cornering speeds , as it takes into account the
* nonlinearities of both the junction angle and junction velocity .
*
* NOTE : If the junction deviation value is finite , Grbl executes the motions in an exact path
* mode ( G61 ) . If the junction deviation value is zero , Grbl will execute the motion in an exact
* stop mode ( G61 .1 ) manner . In the future , if continuous mode ( G64 ) is desired , the math here
* is exactly the same . Instead of motioning all the way to junction point , the machine will
* just follow the arc circle defined here . The Arduino doesn ' t have the CPU cycles to perform
* a continuous mode path , but ARM - based microcontrollers most certainly do .
*
* NOTE : The max junction speed is a fixed value , since machine acceleration limits cannot be
* changed dynamically during operation nor can the line move geometry . This must be kept in
* memory in the event of a feedrate override changing the nominal speeds of blocks , which can
* change the overall maximum entry speed conditions of all blocks .
*/
2016-04-28 03:06:32 +02:00
2018-05-08 10:02:54 +02:00
// Unit vector of previous path line segment
static float previous_unit_vec [
# if ENABLED(JUNCTION_DEVIATION_INCLUDE_E)
XYZE
# else
XYZ
# endif
] ;
2016-04-28 03:06:32 +02:00
2018-05-08 10:02:54 +02:00
float unit_vec [ ] = {
2018-02-03 01:49:32 +01:00
delta_mm [ A_AXIS ] * inverse_millimeters ,
delta_mm [ B_AXIS ] * inverse_millimeters ,
delta_mm [ C_AXIS ] * inverse_millimeters
2018-05-08 10:02:54 +02:00
# if ENABLED(JUNCTION_DEVIATION_INCLUDE_E)
, delta_mm [ E_AXIS ] * inverse_millimeters
# endif
2016-10-11 09:00:29 +02:00
} ;
2015-03-21 04:42:49 +01:00
// Skip first block or when previous_nominal_speed is used as a flag for homing and offset cycles.
2017-12-05 01:53:24 +01:00
if ( moves_queued & & ! UNEAR_ZERO ( previous_nominal_speed ) ) {
2015-03-21 04:42:49 +01:00
// Compute cosine of angle between previous and current path. (prev_unit_vec is negative)
// NOTE: Max junction velocity is computed without sin() or acos() by trig half angle identity.
2018-05-08 10:02:54 +02:00
float junction_cos_theta = - previous_unit_vec [ X_AXIS ] * unit_vec [ X_AXIS ]
- previous_unit_vec [ Y_AXIS ] * unit_vec [ Y_AXIS ]
- previous_unit_vec [ Z_AXIS ] * unit_vec [ Z_AXIS ]
# if ENABLED(JUNCTION_DEVIATION_INCLUDE_E)
- previous_unit_vec [ E_AXIS ] * unit_vec [ E_AXIS ]
# endif
;
// NOTE: Computed without any expensive trig, sin() or acos(), by trig half angle identity of cos(theta).
if ( junction_cos_theta > 0.999999 ) {
// For a 0 degree acute junction, just set minimum junction speed.
vmax_junction = MINIMUM_PLANNER_SPEED ;
}
else {
junction_cos_theta = max ( junction_cos_theta , - 0.999999 ) ; // Check for numerical round-off to avoid divide by zero.
const float sin_theta_d2 = SQRT ( 0.5 * ( 1.0 - junction_cos_theta ) ) ; // Trig half angle identity. Always positive.
// TODO: Technically, the acceleration used in calculation needs to be limited by the minimum of the
// two junctions. However, this shouldn't be a significant problem except in extreme circumstances.
vmax_junction = SQRT ( ( block - > acceleration * JUNCTION_DEVIATION_FACTOR * sin_theta_d2 ) / ( 1.0 - sin_theta_d2 ) ) ;
2011-11-15 22:50:43 +01:00
}
2018-05-08 10:02:54 +02:00
vmax_junction = MIN3 ( vmax_junction , block - > nominal_speed , previous_nominal_speed ) ;
2011-11-15 22:50:43 +01:00
}
2018-05-08 10:02:54 +02:00
else // Init entry speed to zero. Assume it starts from rest. Planner will correct this later.
vmax_junction = 0.0 ;
2015-03-21 04:42:49 +01:00
2018-05-08 10:02:54 +02:00
COPY ( previous_unit_vec , unit_vec ) ;
2017-12-20 22:59:20 +01:00
2018-05-08 10:02:54 +02:00
# else // Classic Jerk Limiting
2017-12-20 22:59:20 +01:00
2018-05-08 10:02:54 +02:00
/**
* Adapted from Průša MKS firmware
* https : //github.com/prusa3d/Prusa-Firmware
*
* Start with a safe speed ( from which the machine may halt to stop immediately ) .
*/
// Exit speed limited by a jerk to full halt of a previous last segment
static float previous_safe_speed ;
float safe_speed = block - > nominal_speed ;
uint8_t limited = 0 ;
LOOP_XYZE ( i ) {
const float jerk = FABS ( current_speed [ i ] ) , maxj = max_jerk [ i ] ;
if ( jerk > maxj ) {
if ( limited ) {
const float mjerk = maxj * block - > nominal_speed ;
if ( jerk * safe_speed > mjerk ) safe_speed = mjerk / jerk ;
}
else {
+ + limited ;
safe_speed = maxj ;
}
2017-12-20 22:59:20 +01:00
}
}
2018-05-08 10:02:54 +02:00
if ( moves_queued & & ! UNEAR_ZERO ( previous_nominal_speed ) ) {
// Estimate a maximum velocity allowed at a joint of two successive segments.
// If this maximum velocity allowed is lower than the minimum of the entry / exit safe velocities,
// then the machine is not coasting anymore and the safe entry / exit velocities shall be used.
// The junction velocity will be shared between successive segments. Limit the junction velocity to their minimum.
// Pick the smaller of the nominal speeds. Higher speed shall not be achieved at the junction during coasting.
vmax_junction = min ( block - > nominal_speed , previous_nominal_speed ) ;
// Factor to multiply the previous / current nominal velocities to get componentwise limited velocities.
float v_factor = 1 ;
limited = 0 ;
// Now limit the jerk in all axes.
const float smaller_speed_factor = vmax_junction / previous_nominal_speed ;
LOOP_XYZE ( axis ) {
// Limit an axis. We have to differentiate: coasting, reversal of an axis, full stop.
float v_exit = previous_speed [ axis ] * smaller_speed_factor ,
v_entry = current_speed [ axis ] ;
if ( limited ) {
v_exit * = v_factor ;
v_entry * = v_factor ;
}
2017-03-31 22:08:08 +02:00
2018-05-08 10:02:54 +02:00
// Calculate jerk depending on whether the axis is coasting in the same direction or reversing.
const float jerk = ( v_exit > v_entry )
? // coasting axis reversal
( ( v_entry > 0 | | v_exit < 0 ) ? ( v_exit - v_entry ) : max ( v_exit , - v_entry ) )
: // v_exit <= v_entry coasting axis reversal
( ( v_entry < 0 | | v_exit > 0 ) ? ( v_entry - v_exit ) : max ( - v_exit , v_entry ) ) ;
2016-12-09 07:50:25 +01:00
2018-05-08 10:02:54 +02:00
if ( jerk > max_jerk [ axis ] ) {
v_factor * = max_jerk [ axis ] / jerk ;
+ + limited ;
}
2016-10-11 09:00:29 +02:00
}
2018-05-08 10:02:54 +02:00
if ( limited ) vmax_junction * = v_factor ;
// Now the transition velocity is known, which maximizes the shared exit / entry velocity while
// respecting the jerk factors, it may be possible, that applying separate safe exit / entry velocities will achieve faster prints.
const float vmax_junction_threshold = vmax_junction * 0.99f ;
if ( previous_safe_speed > vmax_junction_threshold & & safe_speed > vmax_junction_threshold )
vmax_junction = safe_speed ;
2016-10-11 09:00:29 +02:00
}
2018-05-08 10:02:54 +02:00
else
2016-10-11 09:00:29 +02:00
vmax_junction = safe_speed ;
2018-05-08 10:02:54 +02:00
previous_safe_speed = safe_speed ;
# endif // Classic Jerk Limiting
2016-10-11 09:00:29 +02:00
// Max entry speed of this block equals the max exit speed of the previous block.
2011-11-15 22:50:43 +01:00
block - > max_entry_speed = vmax_junction ;
2012-06-11 17:33:42 +02:00
2011-11-15 22:50:43 +01:00
// Initialize block entry speed. Compute based on deceleration to user-defined MINIMUM_PLANNER_SPEED.
2016-12-09 07:51:56 +01:00
const float v_allowable = max_allowable_speed ( - block - > acceleration , MINIMUM_PLANNER_SPEED , block - > millimeters ) ;
2018-01-12 01:50:18 +01:00
// If stepper ISR is disabled, this indicates buffer_segment wants to add a split block.
// In this case start with the max. allowed speed to avoid an interrupted first move.
2018-04-24 03:47:31 +02:00
block - > entry_speed = STEPPER_ISR_ENABLED ( ) ? MINIMUM_PLANNER_SPEED : min ( vmax_junction , v_allowable ) ;
2011-11-15 22:50:43 +01:00
// Initialize planner efficiency flags
// Set flag if block will always reach maximum junction speed regardless of entry/exit speeds.
// If a block can de/ac-celerate from nominal speed to zero within the length of the block, then
// the current block and next block junction speeds are guaranteed to always be at their maximum
// junction speeds in deceleration and acceleration, respectively. This is due to how the current
// block nominal speed limits both the current and next maximum junction speeds. Hence, in both
// the reverse and forward planners, the corresponding block junction speed will always be at the
// the maximum junction speed and may always be ignored for any speed reduction checks.
2018-01-12 01:50:18 +01:00
block - > flag | = block - > nominal_speed < = v_allowable ? BLOCK_FLAG_RECALCULATE | BLOCK_FLAG_NOMINAL_LENGTH : BLOCK_FLAG_RECALCULATE ;
2016-05-04 21:10:42 +02:00
// Update previous path unit_vector and nominal speed
2017-03-05 02:19:06 +01:00
COPY ( previous_speed , current_speed ) ;
2018-05-08 10:02:54 +02:00
previous_nominal_speed = block - > nominal_speed ;
2016-05-04 21:10:42 +02:00
2011-11-15 22:50:43 +01:00
// Move buffer head
block_buffer_head = next_buffer_head ;
2012-06-11 17:33:42 +02:00
2016-09-22 00:07:34 +02:00
// Update the position (only when a move was queued)
2017-12-01 00:42:02 +01:00
static_assert ( COUNT ( target ) > 1 , " Parameter to _buffer_steps must be (&target)[XYZE]! " ) ;
2017-03-05 02:19:06 +01:00
COPY ( position , target ) ;
2018-04-04 03:59:29 +02:00
# if HAS_POSITION_FLOAT
2018-02-23 07:53:41 +01:00
COPY ( position_float , target_float ) ;
# endif
2011-11-15 22:50:43 +01:00
2016-04-28 03:06:32 +02:00
recalculate ( ) ;
2012-04-15 19:17:33 +02:00
2017-12-01 00:42:02 +01:00
} // _buffer_steps()
2018-05-04 03:23:35 +02:00
/**
* Planner : : buffer_sync_block
* Add a block to the buffer that just updates the position
*/
void Planner : : buffer_sync_block ( ) {
// Wait for the next available block
uint8_t next_buffer_head ;
block_t * const block = get_next_free_block ( next_buffer_head ) ;
2018-05-06 11:20:02 +02:00
block - > flag = BLOCK_FLAG_SYNC_POSITION ;
2018-05-04 03:23:35 +02:00
block - > steps [ A_AXIS ] = position [ A_AXIS ] ;
block - > steps [ B_AXIS ] = position [ B_AXIS ] ;
block - > steps [ C_AXIS ] = position [ C_AXIS ] ;
block - > steps [ E_AXIS ] = position [ E_AXIS ] ;
2018-05-06 11:20:02 +02:00
# if ENABLED(LIN_ADVANCE)
block - > use_advance_lead = false ;
# endif
block - > nominal_speed =
block - > entry_speed =
block - > max_entry_speed =
block - > millimeters =
block - > acceleration = 0 ;
block - > step_event_count =
block - > nominal_rate =
block - > initial_rate =
block - > final_rate =
block - > acceleration_steps_per_s2 =
block - > segment_time_us = 0 ;
2018-05-04 03:23:35 +02:00
block_buffer_head = next_buffer_head ;
stepper . wake_up ( ) ;
} // buffer_sync_block()
2017-12-01 00:42:02 +01:00
/**
2017-12-09 10:24:44 +01:00
* Planner : : buffer_segment
2017-12-01 00:42:02 +01:00
*
* Add a new linear movement to the buffer in axis units .
*
* Leveling and kinematics should be applied ahead of calling this .
*
2018-02-03 01:49:32 +01:00
* a , b , c , e - target positions in mm and / or degrees
* fr_mm_s - ( target ) speed of the move
* extruder - target extruder
* millimeters - the length of the movement , if known
2017-12-01 00:42:02 +01:00
*/
2018-02-03 01:49:32 +01:00
void Planner : : buffer_segment ( const float & a , const float & b , const float & c , const float & e , const float & fr_mm_s , const uint8_t extruder , const float & millimeters /*=0.0*/ ) {
2017-12-01 00:42:02 +01:00
// When changing extruders recalculate steps corresponding to the E position
# if ENABLED(DISTINCT_E_FACTORS)
if ( last_extruder ! = extruder & & axis_steps_per_mm [ E_AXIS_N ] ! = axis_steps_per_mm [ E_AXIS + last_extruder ] ) {
position [ E_AXIS ] = LROUND ( position [ E_AXIS ] * axis_steps_per_mm [ E_AXIS_N ] * steps_to_mm [ E_AXIS + last_extruder ] ) ;
last_extruder = extruder ;
}
# endif
// The target position of the tool in absolute steps
// Calculate target position in absolute steps
2018-02-03 01:49:32 +01:00
const int32_t target [ ABCE ] = {
LROUND ( a * axis_steps_per_mm [ A_AXIS ] ) ,
LROUND ( b * axis_steps_per_mm [ B_AXIS ] ) ,
LROUND ( c * axis_steps_per_mm [ C_AXIS ] ) ,
2017-12-01 00:42:02 +01:00
LROUND ( e * axis_steps_per_mm [ E_AXIS_N ] )
} ;
2018-04-04 03:59:29 +02:00
# if HAS_POSITION_FLOAT
2018-02-23 07:53:41 +01:00
const float target_float [ XYZE ] = { a , b , c , e } ;
# endif
2017-12-20 13:21:09 +01:00
// DRYRUN prevents E moves from taking place
if ( DEBUGGING ( DRYRUN ) ) {
position [ E_AXIS ] = target [ E_AXIS ] ;
2018-04-04 03:59:29 +02:00
# if HAS_POSITION_FLOAT
2017-12-20 13:21:09 +01:00
position_float [ E_AXIS ] = e ;
# endif
}
2017-12-01 00:42:02 +01:00
/* <-- add a slash to enable
2017-12-09 10:24:44 +01:00
SERIAL_ECHOPAIR ( " buffer_segment FR: " , fr_mm_s ) ;
2017-12-01 00:42:02 +01:00
# if IS_KINEMATIC
SERIAL_ECHOPAIR ( " A: " , a ) ;
SERIAL_ECHOPAIR ( " ( " , position [ A_AXIS ] ) ;
SERIAL_ECHOPAIR ( " -> " , target [ A_AXIS ] ) ;
SERIAL_ECHOPAIR ( " ) B: " , b ) ;
# else
SERIAL_ECHOPAIR ( " X: " , a ) ;
SERIAL_ECHOPAIR ( " ( " , position [ X_AXIS ] ) ;
SERIAL_ECHOPAIR ( " -> " , target [ X_AXIS ] ) ;
SERIAL_ECHOPAIR ( " ) Y: " , b ) ;
# endif
SERIAL_ECHOPAIR ( " ( " , position [ Y_AXIS ] ) ;
SERIAL_ECHOPAIR ( " -> " , target [ Y_AXIS ] ) ;
# if ENABLED(DELTA)
SERIAL_ECHOPAIR ( " ) C: " , c ) ;
# else
SERIAL_ECHOPAIR ( " ) Z: " , c ) ;
# endif
SERIAL_ECHOPAIR ( " ( " , position [ Z_AXIS ] ) ;
SERIAL_ECHOPAIR ( " -> " , target [ Z_AXIS ] ) ;
SERIAL_ECHOPAIR ( " ) E: " , e ) ;
SERIAL_ECHOPAIR ( " ( " , position [ E_AXIS ] ) ;
SERIAL_ECHOPAIR ( " -> " , target [ E_AXIS ] ) ;
SERIAL_ECHOLNPGM ( " ) " ) ;
//*/
2017-12-06 14:54:15 +01:00
// Always split the first move into two (if not homing or probing)
2018-03-21 09:18:14 +01:00
if ( ! has_blocks_queued ( ) ) {
2017-12-20 13:21:09 +01:00
2017-12-01 00:42:02 +01:00
# define _BETWEEN(A) (position[A##_AXIS] + target[A##_AXIS]) >> 1
2018-02-03 01:49:32 +01:00
const int32_t between [ ABCE ] = { _BETWEEN ( A ) , _BETWEEN ( B ) , _BETWEEN ( C ) , _BETWEEN ( E ) } ;
2017-12-20 13:21:09 +01:00
2018-04-04 03:59:29 +02:00
# if HAS_POSITION_FLOAT
2018-02-23 07:53:41 +01:00
# define _BETWEEN_F(A) (position_float[A##_AXIS] + target_float[A##_AXIS]) * 0.5
const float between_float [ ABCE ] = { _BETWEEN_F ( A ) , _BETWEEN_F ( B ) , _BETWEEN_F ( C ) , _BETWEEN_F ( E ) } ;
2017-12-20 13:21:09 +01:00
# endif
2018-02-23 07:53:41 +01:00
DISABLE_STEPPER_DRIVER_INTERRUPT ( ) ;
2017-12-20 13:21:09 +01:00
2018-02-23 07:53:41 +01:00
_buffer_steps ( between
2018-04-04 03:59:29 +02:00
# if HAS_POSITION_FLOAT
2018-02-23 07:53:41 +01:00
, between_float
# endif
, fr_mm_s , extruder , millimeters * 0.5
) ;
2017-12-20 13:21:09 +01:00
2017-12-08 05:38:40 +01:00
const uint8_t next = block_buffer_head ;
2018-02-23 07:53:41 +01:00
_buffer_steps ( target
2018-04-04 03:59:29 +02:00
# if HAS_POSITION_FLOAT
2018-02-23 07:53:41 +01:00
, target_float
# endif
, fr_mm_s , extruder , millimeters * 0.5
) ;
2017-12-08 05:38:40 +01:00
SBI ( block_buffer [ next ] . flag , BLOCK_BIT_CONTINUED ) ;
2017-12-01 00:42:02 +01:00
ENABLE_STEPPER_DRIVER_INTERRUPT ( ) ;
}
else
2018-02-23 07:53:41 +01:00
_buffer_steps ( target
2018-04-04 03:59:29 +02:00
# if HAS_POSITION_FLOAT
2018-02-23 07:53:41 +01:00
, target_float
# endif
, fr_mm_s , extruder , millimeters
) ;
2017-12-01 00:42:02 +01:00
2016-04-27 16:15:20 +02:00
stepper . wake_up ( ) ;
2011-11-15 22:50:43 +01:00
2017-12-09 10:24:44 +01:00
} // buffer_segment()
2013-09-29 18:20:06 +02:00
2016-04-11 10:03:10 +02:00
/**
2016-09-28 21:01:29 +02:00
* Directly set the planner XYZ position ( and stepper positions )
* converting mm ( or angles for SCARA ) into steps .
2016-04-11 10:03:10 +02:00
*
* On CORE machines stepper ABC will be translated from the given XYZ .
*/
2013-09-29 18:20:06 +02:00
2016-10-09 20:25:25 +02:00
void Planner : : _set_position_mm ( const float & a , const float & b , const float & c , const float & e ) {
2016-12-04 05:02:27 +01:00
# if ENABLED(DISTINCT_E_FACTORS)
# define _EINDEX (E_AXIS + active_extruder)
last_extruder = active_extruder ;
# else
# define _EINDEX E_AXIS
# endif
2018-05-04 03:23:35 +02:00
position [ A_AXIS ] = LROUND ( a * axis_steps_per_mm [ A_AXIS ] ) ,
position [ B_AXIS ] = LROUND ( b * axis_steps_per_mm [ B_AXIS ] ) ,
position [ C_AXIS ] = LROUND ( c * axis_steps_per_mm [ C_AXIS ] ) ,
position [ E_AXIS ] = LROUND ( e * axis_steps_per_mm [ _EINDEX ] ) ;
2018-04-04 03:59:29 +02:00
# if HAS_POSITION_FLOAT
2018-05-04 03:23:35 +02:00
position_float [ A_AXIS ] = a ;
position_float [ B_AXIS ] = b ;
position_float [ C_AXIS ] = c ;
2017-12-20 13:21:09 +01:00
position_float [ E_AXIS ] = e ;
# endif
2016-08-21 10:10:55 +02:00
previous_nominal_speed = 0.0 ; // Resets planner junction speeds. Assumes start from rest.
2016-10-22 17:07:18 +02:00
ZERO ( previous_speed ) ;
2018-05-04 03:23:35 +02:00
buffer_sync_block ( ) ;
2016-08-21 10:10:55 +02:00
}
2011-11-25 13:43:06 +01:00
2017-12-09 12:11:22 +01:00
void Planner : : set_position_mm_kinematic ( const float ( & cart ) [ XYZE ] ) {
2017-05-01 23:13:09 +02:00
# if PLANNER_LEVELING
2017-12-09 12:11:22 +01:00
float raw [ XYZ ] = { cart [ X_AXIS ] , cart [ Y_AXIS ] , cart [ Z_AXIS ] } ;
apply_leveling ( raw ) ;
2016-10-06 10:56:05 +02:00
# else
2017-12-09 12:11:22 +01:00
const float ( & raw ) [ XYZE ] = cart ;
2016-10-06 10:56:05 +02:00
# endif
# if IS_KINEMATIC
2017-12-09 12:11:22 +01:00
inverse_kinematics ( raw ) ;
_set_position_mm ( delta [ A_AXIS ] , delta [ B_AXIS ] , delta [ C_AXIS ] , cart [ E_AXIS ] ) ;
2016-10-06 10:56:05 +02:00
# else
2017-12-09 12:11:22 +01:00
_set_position_mm ( raw [ X_AXIS ] , raw [ Y_AXIS ] , raw [ Z_AXIS ] , cart [ E_AXIS ] ) ;
2016-10-06 10:56:05 +02:00
# endif
}
2016-09-22 00:31:32 +02:00
/**
* Sync from the stepper positions . ( e . g . , after an interrupted move )
*/
void Planner : : sync_from_steppers ( ) {
2017-12-20 13:21:09 +01:00
LOOP_XYZE ( i ) {
2017-02-18 11:33:25 +01:00
position [ i ] = stepper . position ( ( AxisEnum ) i ) ;
2018-04-04 03:59:29 +02:00
# if HAS_POSITION_FLOAT
2017-12-20 13:21:09 +01:00
position_float [ i ] = position [ i ] * steps_to_mm [ i
# if ENABLED(DISTINCT_E_FACTORS)
+ ( i = = E_AXIS ? active_extruder : 0 )
# endif
] ;
# endif
}
2016-09-22 00:31:32 +02:00
}
2016-04-28 03:06:32 +02:00
/**
2016-09-28 21:01:29 +02:00
* Setters for planner position ( also setting stepper position ) .
2016-04-28 03:06:32 +02:00
*/
2017-05-28 18:33:22 +02:00
void Planner : : set_position_mm ( const AxisEnum axis , const float & v ) {
2016-12-04 05:02:27 +01:00
# if ENABLED(DISTINCT_E_FACTORS)
const uint8_t axis_index = axis + ( axis = = E_AXIS ? active_extruder : 0 ) ;
last_extruder = active_extruder ;
# else
const uint8_t axis_index = axis ;
# endif
2017-06-20 05:39:23 +02:00
position [ axis ] = LROUND ( v * axis_steps_per_mm [ axis_index ] ) ;
2018-04-04 03:59:29 +02:00
# if HAS_POSITION_FLOAT
2017-12-20 13:21:09 +01:00
position_float [ axis ] = v ;
# endif
2016-09-28 21:01:29 +02:00
previous_speed [ axis ] = 0.0 ;
2018-05-04 03:23:35 +02:00
buffer_sync_block ( ) ;
2011-11-20 16:05:42 +01:00
}
2011-11-25 13:43:06 +01:00
2016-04-28 03:06:32 +02:00
// Recalculate the steps/s^2 acceleration rates, based on the mm/s^2
void Planner : : reset_acceleration_rates ( ) {
2016-12-04 05:02:27 +01:00
# if ENABLED(DISTINCT_E_FACTORS)
2018-05-04 03:23:35 +02:00
# define AXIS_CONDITION (i < E_AXIS || i == E_AXIS + active_extruder)
2016-12-04 05:02:27 +01:00
# else
2018-05-04 03:23:35 +02:00
# define AXIS_CONDITION true
2016-12-04 05:02:27 +01:00
# endif
2016-10-24 18:55:41 +02:00
uint32_t highest_rate = 1 ;
2016-12-04 05:02:27 +01:00
LOOP_XYZE_N ( i ) {
2016-06-10 01:53:21 +02:00
max_acceleration_steps_per_s2 [ i ] = max_acceleration_mm_per_s2 [ i ] * axis_steps_per_mm [ i ] ;
2018-05-04 03:23:35 +02:00
if ( AXIS_CONDITION ) NOLESS ( highest_rate , max_acceleration_steps_per_s2 [ i ] ) ;
2016-10-23 12:47:46 +02:00
}
2018-05-04 03:23:35 +02:00
cutoff_long = 4294967295UL / highest_rate ; // 0xFFFFFFFFUL
Allow Edit menu to call fn after edit; Fix PID Ki and Kd display in menus; Actually use changed PID and Max Accel values
Add new 'callback' edit-menu types that call a function after the edit is done. Use this to display and edit Ki and Kd correctly (removing the scaling first and reapplying it after). Also use it to reset maximum stepwise acceleration rates, after updating mm/s^2 rates via menus. (Previously, changes did nothing to affect planner unless saved back to EEPROM, and the machine reset).
Add calls to updatePID() so that PID loop uses updated values whether set by gcode (it already did this), or by restoring defaults, or loading from EEPROM (it didn't do those last two). Similarly, update the maximum step/s^2 accel rates when the mm/s^2 values are changed - whether by menu edits, restore defaults, or EEPROM read.
Refactor the acceleration rate update logic, and the PID scaling logic, into new functions that can be called from wherever, including the callbacks.
Add menu items to allow the z jerk and e jerk to be viewed/edited in the Control->Motion menu, as per xy jerk.
Conflicts:
Marlin/language.h
2013-03-19 15:05:11 +01:00
}
2016-04-28 03:06:32 +02:00
2016-07-24 04:36:26 +02:00
// Recalculate position, steps_to_mm if axis_steps_per_mm changes!
void Planner : : refresh_positioning ( ) {
2016-12-04 05:02:27 +01:00
LOOP_XYZE_N ( i ) steps_to_mm [ i ] = 1.0 / axis_steps_per_mm [ i ] ;
2016-10-06 10:56:05 +02:00
set_position_mm_kinematic ( current_position ) ;
2016-07-24 04:36:26 +02:00
reset_acceleration_rates ( ) ;
}
2016-04-28 03:06:32 +02:00
# if ENABLED(AUTOTEMP)
2016-11-14 11:29:45 +01:00
void Planner : : autotemp_M104_M109 ( ) {
2018-03-04 06:29:35 +01:00
if ( ( autotemp_enabled = parser . seen ( ' F ' ) ) ) autotemp_factor = parser . value_float ( ) ;
2017-05-20 10:03:08 +02:00
if ( parser . seen ( ' S ' ) ) autotemp_min = parser . value_celsius ( ) ;
if ( parser . seen ( ' B ' ) ) autotemp_max = parser . value_celsius ( ) ;
2016-04-28 03:06:32 +02:00
}
# endif