Merge pull request #11002 from thinkyhead/bf1_junction_deviation_fix

[1.1.x] Updates for junction_deviation_mm
This commit is contained in:
Scott Lahteine 2018-06-11 22:03:59 -05:00 committed by GitHub
commit fe69cf8a5d
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
10 changed files with 116 additions and 82 deletions

View File

@ -60,10 +60,10 @@ extern const char axis_codes[XYZE];
#if HAS_X2_ENABLE
#define enable_X() do{ X_ENABLE_WRITE( X_ENABLE_ON); X2_ENABLE_WRITE( X_ENABLE_ON); }while(0)
#define disable_X() do{ X_ENABLE_WRITE(!X_ENABLE_ON); X2_ENABLE_WRITE(!X_ENABLE_ON); axis_known_position[X_AXIS] = false; }while(0)
#define disable_X() do{ X_ENABLE_WRITE(!X_ENABLE_ON); X2_ENABLE_WRITE(!X_ENABLE_ON); CBI(axis_known_position, X_AXIS); }while(0)
#elif HAS_X_ENABLE
#define enable_X() X_ENABLE_WRITE( X_ENABLE_ON)
#define disable_X() do{ X_ENABLE_WRITE(!X_ENABLE_ON); axis_known_position[X_AXIS] = false; }while(0)
#define disable_X() do{ X_ENABLE_WRITE(!X_ENABLE_ON); CBI(axis_known_position, X_AXIS); }while(0)
#else
#define enable_X() NOOP
#define disable_X() NOOP
@ -71,10 +71,10 @@ extern const char axis_codes[XYZE];
#if HAS_Y2_ENABLE
#define enable_Y() do{ Y_ENABLE_WRITE( Y_ENABLE_ON); Y2_ENABLE_WRITE(Y_ENABLE_ON); }while(0)
#define disable_Y() do{ Y_ENABLE_WRITE(!Y_ENABLE_ON); Y2_ENABLE_WRITE(!Y_ENABLE_ON); axis_known_position[Y_AXIS] = false; }while(0)
#define disable_Y() do{ Y_ENABLE_WRITE(!Y_ENABLE_ON); Y2_ENABLE_WRITE(!Y_ENABLE_ON); CBI(axis_known_position, Y_AXIS); }while(0)
#elif HAS_Y_ENABLE
#define enable_Y() Y_ENABLE_WRITE( Y_ENABLE_ON)
#define disable_Y() do{ Y_ENABLE_WRITE(!Y_ENABLE_ON); axis_known_position[Y_AXIS] = false; }while(0)
#define disable_Y() do{ Y_ENABLE_WRITE(!Y_ENABLE_ON); CBI(axis_known_position, Y_AXIS); }while(0)
#else
#define enable_Y() NOOP
#define disable_Y() NOOP
@ -82,10 +82,10 @@ extern const char axis_codes[XYZE];
#if HAS_Z2_ENABLE
#define enable_Z() do{ Z_ENABLE_WRITE( Z_ENABLE_ON); Z2_ENABLE_WRITE(Z_ENABLE_ON); }while(0)
#define disable_Z() do{ Z_ENABLE_WRITE(!Z_ENABLE_ON); Z2_ENABLE_WRITE(!Z_ENABLE_ON); axis_known_position[Z_AXIS] = false; }while(0)
#define disable_Z() do{ Z_ENABLE_WRITE(!Z_ENABLE_ON); Z2_ENABLE_WRITE(!Z_ENABLE_ON); CBI(axis_known_position, Z_AXIS); }while(0)
#elif HAS_Z_ENABLE
#define enable_Z() Z_ENABLE_WRITE( Z_ENABLE_ON)
#define disable_Z() do{ Z_ENABLE_WRITE(!Z_ENABLE_ON); axis_known_position[Z_AXIS] = false; }while(0)
#define disable_Z() do{ Z_ENABLE_WRITE(!Z_ENABLE_ON); CBI(axis_known_position, Z_AXIS); }while(0)
#else
#define enable_Z() NOOP
#define disable_Z() NOOP
@ -222,9 +222,14 @@ extern int16_t feedrate_percentage;
#define MMS_SCALED(MM_S) ((MM_S)*feedrate_percentage*0.01)
extern bool axis_relative_modes[];
extern bool axis_known_position[XYZ];
extern bool axis_homed[XYZ];
extern bool axis_relative_modes[XYZE];
extern uint8_t axis_homed, axis_known_position;
constexpr uint8_t xyz_bits = _BV(X_AXIS) | _BV(Y_AXIS) | _BV(Z_AXIS);
FORCE_INLINE bool all_axes_homed() { return (axis_homed & xyz_bits) == xyz_bits; }
FORCE_INLINE bool all_axes_known() { return (axis_known_position & xyz_bits) == xyz_bits; }
extern volatile bool wait_for_heatup;
#if HAS_RESUME_CONTINUE

View File

@ -397,7 +397,7 @@ float destination[XYZE] = { 0.0 };
* Flags that the position is known in each linear axis. Set when homed.
* Cleared whenever a stepper powers off, potentially losing its position.
*/
bool axis_homed[XYZ] = { false }, axis_known_position[XYZ] = { false };
uint8_t axis_homed, axis_known_position; // = 0
/**
* GCode line number handling. Hosts may opt to include line numbers when
@ -451,7 +451,7 @@ static float saved_feedrate_mm_s;
int16_t feedrate_percentage = 100, saved_feedrate_percentage;
// Initialized by settings.load()
bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
bool axis_relative_modes[XYZE] = AXIS_RELATIVE_MODES;
#if HAS_WORKSPACE_OFFSET
#if HAS_POSITION_SHIFT
@ -1428,7 +1428,8 @@ static void set_axis_is_at_home(const AxisEnum axis) {
}
#endif
axis_known_position[axis] = axis_homed[axis] = true;
SBI(axis_known_position, axis);
SBI(axis_homed, axis);
#if HAS_POSITION_SHIFT
position_shift[axis] = 0;
@ -1753,13 +1754,13 @@ void clean_up_after_endstop_or_probe_move() {
bool axis_unhomed_error(const bool x/*=true*/, const bool y/*=true*/, const bool z/*=true*/) {
#if ENABLED(HOME_AFTER_DEACTIVATE)
const bool xx = x && !axis_known_position[X_AXIS],
yy = y && !axis_known_position[Y_AXIS],
zz = z && !axis_known_position[Z_AXIS];
const bool xx = x && !TEST(axis_known_position, X_AXIS),
yy = y && !TEST(axis_known_position, Y_AXIS),
zz = z && !TEST(axis_known_position, Z_AXIS);
#else
const bool xx = x && !axis_homed[X_AXIS],
yy = y && !axis_homed[Y_AXIS],
zz = z && !axis_homed[Z_AXIS];
const bool xx = x && !TEST(axis_homed, X_AXIS),
yy = y && !TEST(axis_homed, Y_AXIS),
zz = z && !TEST(axis_homed, Z_AXIS);
#endif
if (xx || yy || zz) {
SERIAL_ECHO_START();
@ -2110,7 +2111,7 @@ void clean_up_after_endstop_or_probe_move() {
// For beds that fall when Z is powered off only raise for trusted Z
#if ENABLED(UNKNOWN_Z_NO_RAISE)
const bool unknown_condition = axis_known_position[Z_AXIS];
const bool unknown_condition = TEST(axis_known_position, Z_AXIS);
#else
constexpr float unknown_condition = true;
#endif
@ -2271,7 +2272,7 @@ void clean_up_after_endstop_or_probe_move() {
// Stop the probe before it goes too low to prevent damage.
// If Z isn't known then probe to -10mm.
const float z_probe_low_point = axis_known_position[Z_AXIS] ? -zprobe_zoffset + Z_PROBE_LOW_POINT : -10.0;
const float z_probe_low_point = TEST(axis_known_position, Z_AXIS) ? -zprobe_zoffset + Z_PROBE_LOW_POINT : -10.0;
// Double-probing does a fast probe followed by a slow probe
#if MULTIPLE_PROBING == 2
@ -3978,7 +3979,7 @@ inline void gcode_G4() {
inline void home_z_safely() {
// Disallow Z homing if X or Y are unknown
if (!axis_known_position[X_AXIS] || !axis_known_position[Y_AXIS]) {
if (!TEST(axis_known_position, X_AXIS) || !TEST(axis_known_position, Y_AXIS)) {
LCD_MESSAGEPGM(MSG_ERR_Z_HOMING);
SERIAL_ECHO_START();
SERIAL_ECHOLNPGM(MSG_ERR_Z_HOMING);
@ -4130,7 +4131,7 @@ inline void gcode_G28(const bool always_home_all) {
const float z_homing_height = (
#if ENABLED(UNKNOWN_Z_NO_RAISE)
!axis_known_position[Z_AXIS] ? 0 :
!TEST(axis_known_position, Z_AXIS) ? 0 :
#endif
(parser.seenval('R') ? parser.value_linear_units() : Z_HOMING_HEIGHT)
);
@ -8623,7 +8624,9 @@ inline void gcode_M92() {
const float value = parser.value_per_axis_unit((AxisEnum)(E_AXIS + TARGET_EXTRUDER));
if (value < 20.0) {
float factor = planner.axis_steps_per_mm[E_AXIS + TARGET_EXTRUDER] / value; // increase e constants if M92 E14 is given for netfab.
planner.max_jerk[E_AXIS] *= factor;
#if DISABLED(JUNCTION_DEVIATION)
planner.max_jerk[E_AXIS] *= factor;
#endif
planner.max_feedrate_mm_s[E_AXIS + TARGET_EXTRUDER] *= factor;
planner.max_acceleration_steps_per_s2[E_AXIS + TARGET_EXTRUDER] *= factor;
}
@ -9140,8 +9143,10 @@ inline void gcode_M205() {
#if ENABLED(JUNCTION_DEVIATION)
if (parser.seen('J')) {
const float junc_dev = parser.value_linear_units();
if (WITHIN(junc_dev, 0.01, 0.3))
if (WITHIN(junc_dev, 0.01, 0.3)) {
planner.junction_deviation_mm = junc_dev;
planner.recalculate_max_e_jerk_factor();
}
else {
SERIAL_ERROR_START();
SERIAL_ERRORLNPGM("?J out of range (0.01 to 0.3)");
@ -9157,8 +9162,6 @@ inline void gcode_M205() {
SERIAL_ECHOLNPGM("WARNING! Low Z Jerk may lead to unwanted pauses.");
#endif
}
#endif
#if DISABLED(JUNCTION_DEVIATION) || ENABLED(LIN_ADVANCE)
if (parser.seen('E')) planner.max_jerk[E_AXIS] = parser.value_linear_units();
#endif
}
@ -11277,7 +11280,7 @@ inline void gcode_M502() {
const uint16_t _rms = parser.seenval('S') ? parser.value_int() : CALIBRATION_CURRENT,
_z = parser.seenval('Z') ? parser.value_linear_units() : CALIBRATION_EXTRA_HEIGHT;
if (!axis_known_position[Z_AXIS]) {
if (!TEST(axis_known_position, Z_AXIS)) {
SERIAL_ECHOLNPGM("\nPlease home Z axis first");
return;
}
@ -12772,7 +12775,7 @@ void ok_to_send() {
delta_diagonal_rod_2_tower[B_AXIS] = sq(delta_diagonal_rod + drt[B_AXIS]);
delta_diagonal_rod_2_tower[C_AXIS] = sq(delta_diagonal_rod + drt[C_AXIS]);
update_software_endstops(Z_AXIS);
axis_homed[X_AXIS] = axis_homed[Y_AXIS] = axis_homed[Z_AXIS] = false;
axis_homed = 0;
}
#if ENABLED(DELTA_FAST_SQRT)

View File

@ -319,6 +319,10 @@ void MarlinSettings::postprocess() {
fwretract.refresh_autoretract();
#endif
#if ENABLED(JUNCTION_DEVIATION) && ENABLED(LIN_ADVANCE)
planner.recalculate_max_e_jerk_factor();
#endif
// Refresh steps_to_mm with the reciprocal of axis_steps_per_mm
// and init stepper.count[], planner.position[] with current_position
planner.refresh_positioning();
@ -426,11 +430,13 @@ void MarlinSettings::postprocess() {
EEPROM_WRITE(planner.travel_acceleration);
EEPROM_WRITE(planner.min_feedrate_mm_s);
EEPROM_WRITE(planner.min_travel_feedrate_mm_s);
EEPROM_WRITE(planner.max_jerk);
#if ENABLED(JUNCTION_DEVIATION)
const float planner_max_jerk[] = { DEFAULT_XJERK, DEFAULT_YJERK, DEFAULT_ZJERK, DEFAULT_EJERK };
EEPROM_WRITE(planner_max_jerk);
EEPROM_WRITE(planner.junction_deviation_mm);
#else
EEPROM_WRITE(planner.max_jerk);
dummy = 0.02;
EEPROM_WRITE(dummy);
#endif
@ -1022,11 +1028,12 @@ void MarlinSettings::postprocess() {
EEPROM_READ(planner.travel_acceleration);
EEPROM_READ(planner.min_feedrate_mm_s);
EEPROM_READ(planner.min_travel_feedrate_mm_s);
EEPROM_READ(planner.max_jerk);
#if ENABLED(JUNCTION_DEVIATION)
for (uint8_t q = 4; q--;) EEPROM_READ(dummy);
EEPROM_READ(planner.junction_deviation_mm);
#else
EEPROM_READ(planner.max_jerk);
EEPROM_READ(dummy);
#endif
@ -1720,13 +1727,14 @@ void MarlinSettings::reset() {
planner.travel_acceleration = DEFAULT_TRAVEL_ACCELERATION;
planner.min_feedrate_mm_s = DEFAULT_MINIMUMFEEDRATE;
planner.min_travel_feedrate_mm_s = DEFAULT_MINTRAVELFEEDRATE;
planner.max_jerk[X_AXIS] = DEFAULT_XJERK;
planner.max_jerk[Y_AXIS] = DEFAULT_YJERK;
planner.max_jerk[Z_AXIS] = DEFAULT_ZJERK;
planner.max_jerk[E_AXIS] = DEFAULT_EJERK;
#if ENABLED(JUNCTION_DEVIATION)
planner.junction_deviation_mm = JUNCTION_DEVIATION_MM;
#else
planner.max_jerk[X_AXIS] = DEFAULT_XJERK;
planner.max_jerk[Y_AXIS] = DEFAULT_YJERK;
planner.max_jerk[Z_AXIS] = DEFAULT_ZJERK;
planner.max_jerk[E_AXIS] = DEFAULT_EJERK;
#endif
#if HAS_HOME_OFFSET
@ -2118,8 +2126,6 @@ void MarlinSettings::reset() {
SERIAL_ECHOPAIR(" X", LINEAR_UNIT(planner.max_jerk[X_AXIS]));
SERIAL_ECHOPAIR(" Y", LINEAR_UNIT(planner.max_jerk[Y_AXIS]));
SERIAL_ECHOPAIR(" Z", LINEAR_UNIT(planner.max_jerk[Z_AXIS]));
#endif
#if DISABLED(JUNCTION_DEVIATION) || ENABLED(LIN_ADVANCE)
SERIAL_ECHOPAIR(" E", LINEAR_UNIT(planner.max_jerk[E_AXIS]));
#endif
@ -2198,7 +2204,7 @@ void MarlinSettings::reset() {
SERIAL_ECHOPAIR(" G29 S3 X", (int)px + 1);
SERIAL_ECHOPAIR(" Y", (int)py + 1);
SERIAL_ECHOPGM(" Z");
SERIAL_PROTOCOL_F(LINEAR_UNIT(mbl.z_values[px][py]), 5);
SERIAL_ECHO_F(LINEAR_UNIT(mbl.z_values[px][py]), 5);
SERIAL_EOL();
}
}
@ -2225,7 +2231,7 @@ void MarlinSettings::reset() {
SERIAL_ECHOPAIR(" G29 W I", (int)px);
SERIAL_ECHOPAIR(" J", (int)py);
SERIAL_ECHOPGM(" Z");
SERIAL_PROTOCOL_F(LINEAR_UNIT(z_values[px][py]), 5);
SERIAL_ECHO_F(LINEAR_UNIT(z_values[px][py]), 5);
SERIAL_EOL();
}
}

View File

@ -110,11 +110,15 @@ float Planner::max_feedrate_mm_s[XYZE_N], // (mm/s) M203 XYZE - Max speeds
Planner::acceleration, // (mm/s^2) M204 S - Normal acceleration. DEFAULT ACCELERATION for all printing moves.
Planner::retract_acceleration, // (mm/s^2) M204 R - Retract acceleration. Filament pull-back and push-forward while standing still in the other axes
Planner::travel_acceleration, // (mm/s^2) M204 T - Travel acceleration. DEFAULT ACCELERATION for all NON printing moves.
Planner::max_jerk[XYZE], // (mm/s^2) M205 XYZE - The largest speed change requiring no acceleration.
Planner::min_travel_feedrate_mm_s; // (mm/s) M205 T - Minimum travel feedrate
#if ENABLED(JUNCTION_DEVIATION)
float Planner::junction_deviation_mm; // (mm) M205 J
#if ENABLED(LIN_ADVANCE)
float Planner::max_e_jerk_factor; // Calculated from junction_deviation_mm
#endif
#else
float Planner::max_jerk[XYZE]; // (mm/s^2) M205 XYZE - The largest speed change requiring no acceleration.
#endif
#if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
@ -123,6 +127,9 @@ float Planner::max_feedrate_mm_s[XYZE_N], // (mm/s) M203 XYZE - Max speeds
#if ENABLED(DISTINCT_E_FACTORS)
uint8_t Planner::last_extruder = 0; // Respond to extruder change
#define _EINDEX (E_AXIS + active_extruder)
#else
#define _EINDEX E_AXIS
#endif
int16_t Planner::flow_percentage[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(100); // Extrusion factor for each extruder
@ -2003,6 +2010,13 @@ bool Planner::_populate_block(block_t * const block, bool split_move,
accel = CEIL((esteps ? acceleration : travel_acceleration) * steps_per_mm);
#if ENABLED(LIN_ADVANCE)
#if ENABLED(JUNCTION_DEVIATION)
#define MAX_E_JERK (max_e_jerk_factor * max_acceleration_mm_per_s2[_EINDEX])
#else
#define MAX_E_JERK max_jerk[E_AXIS]
#endif
/**
*
* Use LIN_ADVANCE for blocks if all these are true:
@ -2033,10 +2047,9 @@ bool Planner::_populate_block(block_t * const block, bool split_move,
if (block->e_D_ratio > 3.0)
block->use_advance_lead = false;
else {
const uint32_t max_accel_steps_per_s2 = max_jerk[E_AXIS] / (extruder_advance_K * block->e_D_ratio) * steps_per_mm;
const uint32_t max_accel_steps_per_s2 = MAX_E_JERK / (extruder_advance_K * block->e_D_ratio) * steps_per_mm;
#if ENABLED(LA_DEBUG)
if (accel > max_accel_steps_per_s2)
SERIAL_ECHOLNPGM("Acceleration limited.");
if (accel > max_accel_steps_per_s2) SERIAL_ECHOLNPGM("Acceleration limited.");
#endif
NOMORE(accel, max_accel_steps_per_s2);
}
@ -2441,10 +2454,7 @@ bool Planner::buffer_segment(const float &a, const float &b, const float &c, con
void Planner::_set_position_mm(const float &a, const float &b, const float &c, const float &e) {
#if ENABLED(DISTINCT_E_FACTORS)
#define _EINDEX (E_AXIS + active_extruder)
last_extruder = active_extruder;
#else
#define _EINDEX E_AXIS
#endif
position[A_AXIS] = LROUND(a * axis_steps_per_mm[A_AXIS]),
position[B_AXIS] = LROUND(b * axis_steps_per_mm[B_AXIS]),

View File

@ -190,21 +190,25 @@ class Planner {
// May be auto-adjusted by a filament width sensor
#endif
static uint32_t max_acceleration_steps_per_s2[XYZE_N],
max_acceleration_mm_per_s2[XYZE_N], // Use M201 to override
min_segment_time_us; // Use 'M205 B<µs>' to override
static float max_feedrate_mm_s[XYZE_N], // Max speeds in mm per second
axis_steps_per_mm[XYZE_N],
steps_to_mm[XYZE_N],
min_feedrate_mm_s,
acceleration, // Normal acceleration mm/s^2 DEFAULT ACCELERATION for all printing moves. M204 SXXXX
retract_acceleration, // Retract acceleration mm/s^2 filament pull-back and push-forward while standing still in the other axes M204 TXXXX
travel_acceleration, // Travel acceleration mm/s^2 DEFAULT ACCELERATION for all NON printing moves. M204 MXXXX
max_jerk[XYZE], // The largest speed change requiring no acceleration
min_travel_feedrate_mm_s;
static uint32_t max_acceleration_mm_per_s2[XYZE_N], // (mm/s^2) M201 XYZE
max_acceleration_steps_per_s2[XYZE_N], // (steps/s^2) Derived from mm_per_s2
min_segment_time_us; // (µs) M205 B
static float max_feedrate_mm_s[XYZE_N], // (mm/s) M203 XYZE - Max speeds
axis_steps_per_mm[XYZE_N], // (steps) M92 XYZE - Steps per millimeter
steps_to_mm[XYZE_N], // (mm) Millimeters per step
min_feedrate_mm_s, // (mm/s) M205 S - Minimum linear feedrate
acceleration, // (mm/s^2) M204 S - Normal acceleration. DEFAULT ACCELERATION for all printing moves.
retract_acceleration, // (mm/s^2) M204 R - Retract acceleration. Filament pull-back and push-forward while standing still in the other axes
travel_acceleration, // (mm/s^2) M204 T - Travel acceleration. DEFAULT ACCELERATION for all NON printing moves.
min_travel_feedrate_mm_s; // (mm/s) M205 T - Minimum travel feedrate
#if ENABLED(JUNCTION_DEVIATION)
static float junction_deviation_mm; // Initialized by EEPROM
static float junction_deviation_mm; // (mm) M205 J
#if ENABLED(LIN_ADVANCE)
static float max_e_jerk_factor; // Calculated from junction_deviation_mm
#endif
#else
static float max_jerk[XYZE]; // (mm/s^2) M205 XYZE - The largest speed change requiring no acceleration.
#endif
#if HAS_LEVELING
@ -732,6 +736,14 @@ class Planner {
static void autotemp_M104_M109();
#endif
#if ENABLED(JUNCTION_DEVIATION)
FORCE_INLINE static void recalculate_max_e_jerk_factor() {
#if ENABLED(LIN_ADVANCE)
max_e_jerk_factor = SQRT(SQRT(0.5) * junction_deviation_mm) * RECIPROCAL(1.0 - SQRT(0.5));
#endif
}
#endif
private:
/**

View File

@ -108,11 +108,11 @@ FORCE_INLINE void _draw_axis_value(const AxisEnum axis, const char *value, const
if (blink)
lcd_print(value);
else {
if (!axis_homed[axis])
if (!TEST(axis_homed, axis))
while (const char c = *value++) lcd_print(c <= '.' ? c : '?');
else {
#if DISABLED(HOME_AFTER_DEACTIVATE) && DISABLED(DISABLE_REDUCED_ACCURACY_WARNING)
if (!axis_known_position[axis])
if (!TEST(axis_known_position, axis))
lcd_printPGM(axis == Z_AXIS ? PSTR(" ") : PSTR(" "));
else
#endif

View File

@ -868,9 +868,7 @@ void ST7920_Lite_Status_Screen::update_status_or_position(bool forceUpdate) {
#if ENABLED(DISABLE_REDUCED_ACCURACY_WARNING)
true
#else
axis_known_position[X_AXIS] &&
axis_known_position[Y_AXIS] &&
axis_known_position[Z_AXIS]
all_axes_known()
#endif
);
}

View File

@ -505,7 +505,7 @@ class Temperature {
#if ENABLED(BABYSTEPPING)
static void babystep_axis(const AxisEnum axis, const int16_t distance) {
if (axis_known_position[axis]) {
if (TEST(axis_known_position, axis)) {
#if IS_CORE
#if ENABLED(BABYSTEP_XY)
switch (axis) {

View File

@ -2016,7 +2016,7 @@ void lcd_quick_feedback(const bool clear_buttons) {
void _lcd_level_bed_homing() {
if (lcdDrawUpdate) lcd_implementation_drawedit(PSTR(MSG_LEVEL_BED_HOMING), NULL);
lcdDrawUpdate = LCDVIEW_CALL_NO_REDRAW;
if (axis_homed[X_AXIS] && axis_homed[Y_AXIS] && axis_homed[Z_AXIS])
if (all_axes_homed())
lcd_goto_screen(_lcd_level_bed_homing_done);
}
@ -2029,7 +2029,7 @@ void lcd_quick_feedback(const bool clear_buttons) {
*/
void _lcd_level_bed_continue() {
defer_return_to_status = true;
axis_homed[X_AXIS] = axis_homed[Y_AXIS] = axis_homed[Z_AXIS] = false;
axis_homed = 0;
lcd_goto_screen(_lcd_level_bed_homing);
enqueue_and_echo_commands_P(PSTR("G28"));
}
@ -2359,7 +2359,7 @@ void lcd_quick_feedback(const bool clear_buttons) {
defer_return_to_status = true;
if (lcdDrawUpdate) lcd_implementation_drawmenu_static(LCD_HEIGHT < 3 ? 0 : (LCD_HEIGHT > 4 ? 2 : 1), PSTR(MSG_LEVEL_BED_HOMING));
lcdDrawUpdate = LCDVIEW_CALL_NO_REDRAW;
if (axis_homed[X_AXIS] && axis_homed[Y_AXIS] && axis_homed[Z_AXIS]) {
if (all_axes_homed()) {
ubl.lcd_map_control = true; // Return to the map screen
lcd_goto_screen(_lcd_ubl_output_map_lcd);
}
@ -2403,7 +2403,7 @@ void lcd_quick_feedback(const bool clear_buttons) {
void _lcd_ubl_output_map_lcd() {
static int16_t step_scaler = 0;
if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS]))
if (!all_axes_known())
return lcd_goto_screen(_lcd_ubl_map_homing);
if (use_click()) return _lcd_ubl_map_lcd_edit_cmd();
@ -2452,8 +2452,8 @@ void lcd_quick_feedback(const bool clear_buttons) {
* UBL Homing before LCD map
*/
void _lcd_ubl_output_map_lcd_cmd() {
if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
axis_homed[X_AXIS] = axis_homed[Y_AXIS] = axis_homed[Z_AXIS] = false;
if (!all_axes_known()) {
axis_homed = 0;
enqueue_and_echo_commands_P(PSTR("G28"));
}
lcd_goto_screen(_lcd_ubl_map_homing);
@ -2581,7 +2581,7 @@ void lcd_quick_feedback(const bool clear_buttons) {
START_MENU();
MENU_BACK(MSG_PREPARE);
const bool is_homed = axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS];
const bool is_homed = all_axes_known();
// Auto Home if not using manual probing
#if DISABLED(PROBE_MANUALLY) && DISABLED(MESH_BED_LEVELING)
@ -2623,7 +2623,7 @@ void lcd_quick_feedback(const bool clear_buttons) {
#if ENABLED(LEVEL_BED_CORNERS)
// Move to the next corner for leveling
if (axis_homed[X_AXIS] && axis_homed[Y_AXIS] && axis_homed[Z_AXIS])
if (all_axes_homed())
MENU_ITEM(submenu, MSG_LEVEL_CORNERS, _lcd_level_bed_corners);
#endif
@ -2654,7 +2654,7 @@ void lcd_quick_feedback(const bool clear_buttons) {
// Move Axis
//
#if ENABLED(DELTA)
if (axis_homed[X_AXIS] && axis_homed[Y_AXIS] && axis_homed[Z_AXIS])
if (all_axes_homed())
#endif
MENU_ITEM(submenu, MSG_MOVE_AXIS, lcd_move_menu);
@ -2698,7 +2698,7 @@ void lcd_quick_feedback(const bool clear_buttons) {
#endif
#if ENABLED(LEVEL_BED_CORNERS) && DISABLED(LCD_BED_LEVELING)
if (axis_homed[X_AXIS] && axis_homed[Y_AXIS] && axis_homed[Z_AXIS])
if (all_axes_homed())
MENU_ITEM(function, MSG_LEVEL_CORNERS, _lcd_level_bed_corners);
#endif
@ -2828,7 +2828,7 @@ void lcd_quick_feedback(const bool clear_buttons) {
void _lcd_calibrate_homing() {
if (lcdDrawUpdate) lcd_implementation_drawmenu_static(LCD_HEIGHT >= 4 ? 1 : 0, PSTR(MSG_LEVEL_BED_HOMING));
lcdDrawUpdate = LCDVIEW_CALL_REDRAW_NEXT;
if (axis_homed[X_AXIS] && axis_homed[Y_AXIS] && axis_homed[Z_AXIS])
if (all_axes_homed())
lcd_goto_previous_menu();
}
@ -2883,7 +2883,7 @@ void lcd_quick_feedback(const bool clear_buttons) {
MENU_ITEM(submenu, MSG_DELTA_SETTINGS, lcd_delta_settings);
#if ENABLED(DELTA_CALIBRATION_MENU)
MENU_ITEM(submenu, MSG_AUTO_HOME, _lcd_delta_calibrate_home);
if (axis_homed[X_AXIS] && axis_homed[Y_AXIS] && axis_homed[Z_AXIS]) {
if (all_axes_homed()) {
MENU_ITEM(submenu, MSG_DELTA_CALIBRATE_X, _goto_tower_x);
MENU_ITEM(submenu, MSG_DELTA_CALIBRATE_Y, _goto_tower_y);
MENU_ITEM(submenu, MSG_DELTA_CALIBRATE_Z, _goto_tower_z);
@ -3179,7 +3179,7 @@ void lcd_quick_feedback(const bool clear_buttons) {
*/
#if IS_KINEMATIC || ENABLED(NO_MOTION_BEFORE_HOMING)
#define _MOVE_XYZ_ALLOWED (axis_homed[X_AXIS] && axis_homed[Y_AXIS] && axis_homed[Z_AXIS])
#define _MOVE_XYZ_ALLOWED (all_axes_homed())
#else
#define _MOVE_XYZ_ALLOWED true
#endif
@ -3743,7 +3743,7 @@ void lcd_quick_feedback(const bool clear_buttons) {
MENU_BACK(MSG_MOTION);
#if ENABLED(JUNCTION_DEVIATION)
MENU_ITEM_EDIT(float3, MSG_JUNCTION_DEVIATION, &planner.junction_deviation_mm, 0.01, 0.3);
MENU_ITEM_EDIT_CALLBACK(float43, MSG_JUNCTION_DEVIATION, &planner.junction_deviation_mm, 0.01, 0.3, planner.recalculate_max_e_jerk_factor);
#else
MENU_MULTIPLIER_ITEM_EDIT(float3, MSG_VA_JERK, &planner.max_jerk[A_AXIS], 1, 990);
MENU_MULTIPLIER_ITEM_EDIT(float3, MSG_VB_JERK, &planner.max_jerk[B_AXIS], 1, 990);
@ -3752,8 +3752,8 @@ void lcd_quick_feedback(const bool clear_buttons) {
#else
MENU_MULTIPLIER_ITEM_EDIT(float52sign, MSG_VC_JERK, &planner.max_jerk[C_AXIS], 0.1, 990);
#endif
MENU_MULTIPLIER_ITEM_EDIT(float3, MSG_VE_JERK, &planner.max_jerk[E_AXIS], 1, 990);
#endif
MENU_MULTIPLIER_ITEM_EDIT(float3, MSG_VE_JERK, &planner.max_jerk[E_AXIS], 1, 990);
END_MENU();
}
@ -4919,7 +4919,7 @@ void lcd_quick_feedback(const bool clear_buttons) {
if (REPRAPWORLD_KEYPAD_MOVE_Z_UP) reprapworld_keypad_move_z_up();
#endif
if (axis_homed[X_AXIS] && axis_homed[Y_AXIS] && axis_homed[Z_AXIS]) {
if (all_axes_homed()) {
#if ENABLED(DELTA) || Z_HOME_DIR != -1
if (REPRAPWORLD_KEYPAD_MOVE_Z_UP) reprapworld_keypad_move_z_up();
#endif

View File

@ -636,11 +636,11 @@ FORCE_INLINE void _draw_axis_value(const AxisEnum axis, const char *value, const
if (blink)
lcd.print(value);
else {
if (!axis_homed[axis])
if (!TEST(axis_homed, axis))
while (const char c = *value++) lcd_print(c <= '.' ? c : '?');
else {
#if DISABLED(HOME_AFTER_DEACTIVATE) && DISABLED(DISABLE_REDUCED_ACCURACY_WARNING)
if (!axis_known_position[axis])
if (!TEST(axis_known_position, axis))
lcd_printPGM(axis == Z_AXIS ? PSTR(" ") : PSTR(" "));
else
#endif