Initial cleaning up of arc code

This commit is contained in:
Scott Lahteine 2016-04-03 20:49:18 -07:00
parent 9ce4264fda
commit 5cfb2533d6

View File

@ -7284,26 +7284,26 @@ void plan_arc(
) { ) {
float radius = hypot(offset[X_AXIS], offset[Y_AXIS]), float radius = hypot(offset[X_AXIS], offset[Y_AXIS]),
center_axis0 = current_position[X_AXIS] + offset[X_AXIS], center_X = current_position[X_AXIS] + offset[X_AXIS],
center_axis1 = current_position[Y_AXIS] + offset[Y_AXIS], center_Y = current_position[Y_AXIS] + offset[Y_AXIS],
linear_travel = target[Z_AXIS] - current_position[Z_AXIS], linear_travel = target[Z_AXIS] - current_position[Z_AXIS],
extruder_travel = target[E_AXIS] - current_position[E_AXIS], extruder_travel = target[E_AXIS] - current_position[E_AXIS],
r_axis0 = -offset[X_AXIS], // Radius vector from center to current location r_X = -offset[X_AXIS], // Radius vector from center to current location
r_axis1 = -offset[Y_AXIS], r_Y = -offset[Y_AXIS],
rt_axis0 = target[X_AXIS] - center_axis0, rt_X = target[X_AXIS] - center_X,
rt_axis1 = target[Y_AXIS] - center_axis1; rt_Y = target[Y_AXIS] - center_Y;
// CCW angle of rotation between position and target from the circle center. Only one atan2() trig computation required. // CCW angle of rotation between position and target from the circle center. Only one atan2() trig computation required.
float angular_travel = atan2(r_axis0 * rt_axis1 - r_axis1 * rt_axis0, r_axis0 * rt_axis0 + r_axis1 * rt_axis1); float angular_travel = atan2(r_X * rt_Y - r_Y * rt_X, r_X * rt_X + r_Y * rt_Y);
if (angular_travel < 0) angular_travel += RADIANS(360); if (angular_travel < 0) angular_travel += RADIANS(360);
if (clockwise) angular_travel -= RADIANS(360); if (clockwise) angular_travel -= RADIANS(360);
// Make a circle if the angular rotation is 0 // Make a circle if the angular rotation is 0
if (current_position[X_AXIS] == target[X_AXIS] && current_position[Y_AXIS] == target[Y_AXIS] && angular_travel == 0) if (angular_travel == 0 && current_position[X_AXIS] == target[X_AXIS] && current_position[Y_AXIS] == target[Y_AXIS])
angular_travel += RADIANS(360); angular_travel == RADIANS(360);
float mm_of_travel = hypot(angular_travel * radius, fabs(linear_travel)); float mm_of_travel = hypot(angular_travel * radius, fabs(linear_travel));
if (mm_of_travel < 0.001) return; if (mm_of_travel < 0.001) return;
uint16_t segments = floor(mm_of_travel / (MM_PER_ARC_SEGMENT)); uint16_t segments = floor(mm_of_travel / (MM_PER_ARC_SEGMENT));
if (segments == 0) segments = 1; if (segments == 0) segments = 1;
@ -7342,9 +7342,7 @@ void plan_arc(
float sin_T = theta_per_segment; float sin_T = theta_per_segment;
float arc_target[NUM_AXIS]; float arc_target[NUM_AXIS];
float sin_Ti; float sin_Ti, cos_Ti, r_new_Y;
float cos_Ti;
float r_axisi;
uint16_t i; uint16_t i;
int8_t count = 0; int8_t count = 0;
@ -7356,28 +7354,29 @@ void plan_arc(
float feed_rate = feedrate * feedrate_multiplier / 60 / 100.0; float feed_rate = feedrate * feedrate_multiplier / 60 / 100.0;
for (i = 1; i < segments; i++) { // Increment (segments-1) for (i = 1; i < segments; i++) { // Iterate (segments-1) times
if (count < N_ARC_CORRECTION) { if (++count < N_ARC_CORRECTION) {
// Apply vector rotation matrix to previous r_axis0 / 1 // Apply vector rotation matrix to previous r_X / 1
r_axisi = r_axis0 * sin_T + r_axis1 * cos_T; r_new_Y = r_X * sin_T + r_Y * cos_T;
r_axis0 = r_axis0 * cos_T - r_axis1 * sin_T; r_X = r_X * cos_T - r_Y * sin_T;
r_axis1 = r_axisi; r_Y = r_new_Y;
count++;
} }
else { else {
// Arc correction to radius vector. Computed only every N_ARC_CORRECTION increments. // Arc correction to radius vector. Computed only every N_ARC_CORRECTION increments.
// Compute exact location by applying transformation matrix from initial radius vector(=-offset). // Compute exact location by applying transformation matrix from initial radius vector(=-offset).
// To reduce stuttering, the sin and cos could be computed at different times.
// For now, compute both at the same time.
cos_Ti = cos(i * theta_per_segment); cos_Ti = cos(i * theta_per_segment);
sin_Ti = sin(i * theta_per_segment); sin_Ti = sin(i * theta_per_segment);
r_axis0 = -offset[X_AXIS] * cos_Ti + offset[Y_AXIS] * sin_Ti; r_X = -offset[X_AXIS] * cos_Ti + offset[Y_AXIS] * sin_Ti;
r_axis1 = -offset[X_AXIS] * sin_Ti - offset[Y_AXIS] * cos_Ti; r_Y = -offset[X_AXIS] * sin_Ti - offset[Y_AXIS] * cos_Ti;
count = 0; count = 0;
} }
// Update arc_target location // Update arc_target location
arc_target[X_AXIS] = center_axis0 + r_axis0; arc_target[X_AXIS] = center_X + r_X;
arc_target[Y_AXIS] = center_axis1 + r_axis1; arc_target[Y_AXIS] = center_Y + r_Y;
arc_target[Z_AXIS] += linear_per_segment; arc_target[Z_AXIS] += linear_per_segment;
arc_target[E_AXIS] += extruder_per_segment; arc_target[E_AXIS] += extruder_per_segment;