Firmware2/Marlin/src/feature/encoder_i2c.cpp
X-Ryl669 e7c711996b
Serial refactor. Default 8-bit ECHO to int, not char (#20985)
Co-authored-by: Scott Lahteine <thinkyhead@users.noreply.github.com>
2021-02-08 00:37:24 -06:00

1139 lines
34 KiB
C++

/**
* Marlin 3D Printer Firmware
* Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*
*/
//todo: add support for multiple encoders on a single axis
//todo: add z axis auto-leveling
//todo: consolidate some of the related M codes?
//todo: add endstop-replacement mode?
//todo: try faster I2C speed; tweak TWI_FREQ (400000L, or faster?); or just TWBR = ((CPU_FREQ / 400000L) - 16) / 2;
//todo: consider Marlin-optimized Wire library; i.e. MarlinWire, like MarlinSerial
#include "../inc/MarlinConfig.h"
#if ENABLED(I2C_POSITION_ENCODERS)
#include "encoder_i2c.h"
#include "../module/stepper.h"
#include "../gcode/parser.h"
#include "../feature/babystep.h"
#include <Wire.h>
I2CPositionEncodersMgr I2CPEM;
void I2CPositionEncoder::init(const uint8_t address, const AxisEnum axis) {
encoderAxis = axis;
i2cAddress = address;
initialized++;
SERIAL_ECHOLNPAIR("Setting up encoder on ", AS_CHAR(axis_codes[encoderAxis]), " axis, addr = ", address);
position = get_position();
}
void I2CPositionEncoder::update() {
if (!initialized || !homed || !active) return; //check encoder is set up and active
position = get_position();
//we don't want to stop things just because the encoder missed a message,
//so we only care about responses that indicate bad magnetic strength
if (!passes_test(false)) { //check encoder data is good
lastErrorTime = millis();
/*
if (trusted) { //commented out as part of the note below
trusted = false;
SERIAL_ECHOLNPAIR("Fault detected on ", AS_CHAR(axis_codes[encoderAxis]), " axis encoder. Disengaging error correction until module is trusted again.");
}
*/
return;
}
if (!trusted) {
/**
* This is commented out because it introduces error and can cause bad print quality.
*
* This code is intended to manage situations where the encoder has reported bad magnetic strength.
* This indicates that the magnetic strip was too far away from the sensor to reliably track position.
* When this happens, this code resets the offset based on where the printer thinks it is. This has been
* shown to introduce errors in actual position which result in drifting prints and poor print quality.
* Perhaps a better method would be to disable correction on the axis with a problem, report it to the
* user via the status leds on the encoder module and prompt the user to re-home the axis at which point
* the encoder would be re-enabled.
*/
#if 0
// If the magnetic strength has been good for a certain time, start trusting the module again
if (millis() - lastErrorTime > I2CPE_TIME_TRUSTED) {
trusted = true;
SERIAL_ECHOLNPAIR("Untrusted encoder module on ", AS_CHAR(axis_codes[encoderAxis]), " axis has been fault-free for set duration, reinstating error correction.");
//the encoder likely lost its place when the error occured, so we'll reset and use the printer's
//idea of where it the axis is to re-initialize
const float pos = planner.get_axis_position_mm(encoderAxis);
int32_t positionInTicks = pos * get_ticks_unit();
//shift position from previous to current position
zeroOffset -= (positionInTicks - get_position());
#ifdef I2CPE_DEBUG
SERIAL_ECHOLNPAIR("Current position is ", pos);
SERIAL_ECHOLNPAIR("Position in encoder ticks is ", positionInTicks);
SERIAL_ECHOLNPAIR("New zero-offset of ", zeroOffset);
SERIAL_ECHOPAIR("New position reads as ", get_position());
SERIAL_CHAR('(');
SERIAL_DECIMAL(mm_from_count(get_position()));
SERIAL_ECHOLNPGM(")");
#endif
}
#endif
return;
}
lastPosition = position;
const millis_t positionTime = millis();
//only do error correction if setup and enabled
if (ec && ecMethod != I2CPE_ECM_NONE) {
#ifdef I2CPE_EC_THRESH_PROPORTIONAL
const millis_t deltaTime = positionTime - lastPositionTime;
const uint32_t distance = ABS(position - lastPosition),
speed = distance / deltaTime;
const float threshold = constrain((speed / 50), 1, 50) * ecThreshold;
#else
const float threshold = get_error_correct_threshold();
#endif
//check error
#if ENABLED(I2CPE_ERR_ROLLING_AVERAGE)
float sum = 0, diffSum = 0;
errIdx = (errIdx >= I2CPE_ERR_ARRAY_SIZE - 1) ? 0 : errIdx + 1;
err[errIdx] = get_axis_error_steps(false);
LOOP_L_N(i, I2CPE_ERR_ARRAY_SIZE) {
sum += err[i];
if (i) diffSum += ABS(err[i-1] - err[i]);
}
const int32_t error = int32_t(sum / (I2CPE_ERR_ARRAY_SIZE + 1)); //calculate average for error
#else
const int32_t error = get_axis_error_steps(false);
#endif
//SERIAL_ECHOLNPAIR("Axis error steps: ", error);
#ifdef I2CPE_ERR_THRESH_ABORT
if (ABS(error) > I2CPE_ERR_THRESH_ABORT * planner.settings.axis_steps_per_mm[encoderAxis]) {
//kill(PSTR("Significant Error"));
SERIAL_ECHOLNPAIR("Axis error over threshold, aborting!", error);
safe_delay(5000);
}
#endif
#if ENABLED(I2CPE_ERR_ROLLING_AVERAGE)
if (errIdx == 0) {
// In order to correct for "error" but avoid correcting for noise and non-skips
// it must be > threshold and have a difference average of < 10 and be < 2000 steps
if (ABS(error) > threshold * planner.settings.axis_steps_per_mm[encoderAxis]
&& diffSum < 10 * (I2CPE_ERR_ARRAY_SIZE - 1)
&& ABS(error) < 2000
) { // Check for persistent error (skip)
errPrst[errPrstIdx++] = error; // Error must persist for I2CPE_ERR_PRST_ARRAY_SIZE error cycles. This also serves to improve the average accuracy
if (errPrstIdx >= I2CPE_ERR_PRST_ARRAY_SIZE) {
float sumP = 0;
LOOP_L_N(i, I2CPE_ERR_PRST_ARRAY_SIZE) sumP += errPrst[i];
const int32_t errorP = int32_t(sumP * RECIPROCAL(I2CPE_ERR_PRST_ARRAY_SIZE));
SERIAL_CHAR(axis_codes[encoderAxis]);
SERIAL_ECHOLNPAIR(" : CORRECT ERR ", errorP * planner.steps_to_mm[encoderAxis], "mm");
babystep.add_steps(encoderAxis, -LROUND(errorP));
errPrstIdx = 0;
}
}
else
errPrstIdx = 0;
}
#else
if (ABS(error) > threshold * planner.settings.axis_steps_per_mm[encoderAxis]) {
//SERIAL_ECHOLN(error);
//SERIAL_ECHOLN(position);
babystep.add_steps(encoderAxis, -LROUND(error / 2));
}
#endif
if (ABS(error) > I2CPE_ERR_CNT_THRESH * planner.settings.axis_steps_per_mm[encoderAxis]) {
const millis_t ms = millis();
if (ELAPSED(ms, nextErrorCountTime)) {
SERIAL_CHAR(axis_codes[encoderAxis]);
SERIAL_ECHOLNPAIR(" : LARGE ERR ", error, "; diffSum=", diffSum);
errorCount++;
nextErrorCountTime = ms + I2CPE_ERR_CNT_DEBOUNCE_MS;
}
}
}
lastPositionTime = positionTime;
}
void I2CPositionEncoder::set_homed() {
if (active) {
reset(); // Reset module's offset to zero (so current position is homed / zero)
delay(10);
zeroOffset = get_raw_count();
homed++;
trusted++;
#ifdef I2CPE_DEBUG
SERIAL_CHAR(axis_codes[encoderAxis]);
SERIAL_ECHOLNPAIR(" axis encoder homed, offset of ", zeroOffset, " ticks.");
#endif
}
}
void I2CPositionEncoder::set_unhomed() {
zeroOffset = 0;
homed = trusted = false;
#ifdef I2CPE_DEBUG
SERIAL_CHAR(axis_codes[encoderAxis]);
SERIAL_ECHOLNPGM(" axis encoder unhomed.");
#endif
}
bool I2CPositionEncoder::passes_test(const bool report) {
if (report) {
if (H != I2CPE_MAG_SIG_GOOD) SERIAL_ECHOPGM("Warning. ");
SERIAL_CHAR(axis_codes[encoderAxis]);
serial_ternary(H == I2CPE_MAG_SIG_BAD, PSTR(" axis "), PSTR("magnetic strip "), PSTR("encoder "));
switch (H) {
case I2CPE_MAG_SIG_GOOD:
case I2CPE_MAG_SIG_MID:
SERIAL_ECHO_TERNARY(H == I2CPE_MAG_SIG_GOOD, "passes test; field strength ", "good", "fair", ".\n");
break;
default:
SERIAL_ECHOLNPGM("not detected!");
}
}
return (H == I2CPE_MAG_SIG_GOOD || H == I2CPE_MAG_SIG_MID);
}
float I2CPositionEncoder::get_axis_error_mm(const bool report) {
const float target = planner.get_axis_position_mm(encoderAxis),
actual = mm_from_count(position),
diff = actual - target,
error = ABS(diff) > 10000 ? 0 : diff; // Huge error is a bad reading
if (report) {
SERIAL_CHAR(axis_codes[encoderAxis]);
SERIAL_ECHOLNPAIR(" axis target=", target, "mm; actual=", actual, "mm; err=", error, "mm");
}
return error;
}
int32_t I2CPositionEncoder::get_axis_error_steps(const bool report) {
if (!active) {
if (report) {
SERIAL_CHAR(axis_codes[encoderAxis]);
SERIAL_ECHOLNPGM(" axis encoder not active!");
}
return 0;
}
float stepperTicksPerUnit;
int32_t encoderTicks = position, encoderCountInStepperTicksScaled;
//int32_t stepperTicks = stepper.position(encoderAxis);
// With a rotary encoder we're concerned with ticks/rev; whereas with a linear we're concerned with ticks/mm
stepperTicksPerUnit = (type == I2CPE_ENC_TYPE_ROTARY) ? stepperTicks : planner.settings.axis_steps_per_mm[encoderAxis];
//convert both 'ticks' into same units / base
encoderCountInStepperTicksScaled = LROUND((stepperTicksPerUnit * encoderTicks) / encoderTicksPerUnit);
const int32_t target = stepper.position(encoderAxis);
int32_t error = encoderCountInStepperTicksScaled - target;
//suppress discontinuities (might be caused by bad I2C readings...?)
const bool suppressOutput = (ABS(error - errorPrev) > 100);
errorPrev = error;
if (report) {
SERIAL_CHAR(axis_codes[encoderAxis]);
SERIAL_ECHOLNPAIR(" axis target=", target, "; actual=", encoderCountInStepperTicksScaled, "; err=", error);
}
if (suppressOutput) {
if (report) SERIAL_ECHOLNPGM("!Discontinuity. Suppressing error.");
error = 0;
}
return error;
}
int32_t I2CPositionEncoder::get_raw_count() {
uint8_t index = 0;
i2cLong encoderCount;
encoderCount.val = 0x00;
if (Wire.requestFrom(I2C_ADDRESS(i2cAddress), uint8_t(3)) != 3) {
//houston, we have a problem...
H = I2CPE_MAG_SIG_NF;
return 0;
}
while (Wire.available())
encoderCount.bval[index++] = (uint8_t)Wire.read();
//extract the magnetic strength
H = (B00000011 & (encoderCount.bval[2] >> 6));
//extract sign bit; sign = (encoderCount.bval[2] & B00100000);
//set all upper bits to the sign value to overwrite H
encoderCount.val = (encoderCount.bval[2] & B00100000) ? (encoderCount.val | 0xFFC00000) : (encoderCount.val & 0x003FFFFF);
if (invert) encoderCount.val *= -1;
return encoderCount.val;
}
bool I2CPositionEncoder::test_axis() {
//only works on XYZ cartesian machines for the time being
if (!(encoderAxis == X_AXIS || encoderAxis == Y_AXIS || encoderAxis == Z_AXIS)) return false;
const float startPosition = soft_endstop.min[encoderAxis] + 10,
endPosition = soft_endstop.max[encoderAxis] - 10;
const feedRate_t fr_mm_s = FLOOR(homing_feedrate(encoderAxis));
ec = false;
xyze_pos_t startCoord, endCoord;
LOOP_XYZ(a) {
startCoord[a] = planner.get_axis_position_mm((AxisEnum)a);
endCoord[a] = planner.get_axis_position_mm((AxisEnum)a);
}
startCoord[encoderAxis] = startPosition;
endCoord[encoderAxis] = endPosition;
planner.synchronize();
startCoord.e = planner.get_axis_position_mm(E_AXIS);
planner.buffer_line(startCoord, fr_mm_s, 0);
planner.synchronize();
// if the module isn't currently trusted, wait until it is (or until it should be if things are working)
if (!trusted) {
int32_t startWaitingTime = millis();
while (!trusted && millis() - startWaitingTime < I2CPE_TIME_TRUSTED)
safe_delay(500);
}
if (trusted) { // if trusted, commence test
endCoord.e = planner.get_axis_position_mm(E_AXIS);
planner.buffer_line(endCoord, fr_mm_s, 0);
planner.synchronize();
}
return trusted;
}
void I2CPositionEncoder::calibrate_steps_mm(const uint8_t iter) {
if (type != I2CPE_ENC_TYPE_LINEAR) {
SERIAL_ECHOLNPGM("Steps/mm calibration requires linear encoder.");
return;
}
if (!(encoderAxis == X_AXIS || encoderAxis == Y_AXIS || encoderAxis == Z_AXIS)) {
SERIAL_ECHOLNPGM("Steps/mm calibration not supported for this axis.");
return;
}
float old_steps_mm, new_steps_mm,
startDistance, endDistance,
travelDistance, travelledDistance, total = 0;
int32_t startCount, stopCount;
const feedRate_t fr_mm_s = homing_feedrate(encoderAxis);
bool oldec = ec;
ec = false;
startDistance = 20;
endDistance = soft_endstop.max[encoderAxis] - 20;
travelDistance = endDistance - startDistance;
xyze_pos_t startCoord, endCoord;
LOOP_XYZ(a) {
startCoord[a] = planner.get_axis_position_mm((AxisEnum)a);
endCoord[a] = planner.get_axis_position_mm((AxisEnum)a);
}
startCoord[encoderAxis] = startDistance;
endCoord[encoderAxis] = endDistance;
planner.synchronize();
LOOP_L_N(i, iter) {
startCoord.e = planner.get_axis_position_mm(E_AXIS);
planner.buffer_line(startCoord, fr_mm_s, 0);
planner.synchronize();
delay(250);
startCount = get_position();
//do_blocking_move_to(endCoord);
endCoord.e = planner.get_axis_position_mm(E_AXIS);
planner.buffer_line(endCoord, fr_mm_s, 0);
planner.synchronize();
//Read encoder distance
delay(250);
stopCount = get_position();
travelledDistance = mm_from_count(ABS(stopCount - startCount));
SERIAL_ECHOLNPAIR("Attempted travel: ", travelDistance, "mm");
SERIAL_ECHOLNPAIR(" Actual travel: ", travelledDistance, "mm");
//Calculate new axis steps per unit
old_steps_mm = planner.settings.axis_steps_per_mm[encoderAxis];
new_steps_mm = (old_steps_mm * travelDistance) / travelledDistance;
SERIAL_ECHOLNPAIR("Old steps/mm: ", old_steps_mm);
SERIAL_ECHOLNPAIR("New steps/mm: ", new_steps_mm);
//Save new value
planner.settings.axis_steps_per_mm[encoderAxis] = new_steps_mm;
if (iter > 1) {
total += new_steps_mm;
// swap start and end points so next loop runs from current position
const float tempCoord = startCoord[encoderAxis];
startCoord[encoderAxis] = endCoord[encoderAxis];
endCoord[encoderAxis] = tempCoord;
}
}
if (iter > 1) {
total /= (float)iter;
SERIAL_ECHOLNPAIR("Average steps/mm: ", total);
}
ec = oldec;
SERIAL_ECHOLNPGM("Calculated steps/mm set. Use M500 to save to EEPROM.");
}
void I2CPositionEncoder::reset() {
Wire.beginTransmission(I2C_ADDRESS(i2cAddress));
Wire.write(I2CPE_RESET_COUNT);
Wire.endTransmission();
TERN_(I2CPE_ERR_ROLLING_AVERAGE, ZERO(err));
}
bool I2CPositionEncodersMgr::I2CPE_anyaxis;
uint8_t I2CPositionEncodersMgr::I2CPE_addr,
I2CPositionEncodersMgr::I2CPE_idx;
I2CPositionEncoder I2CPositionEncodersMgr::encoders[I2CPE_ENCODER_CNT];
void I2CPositionEncodersMgr::init() {
Wire.begin();
#if I2CPE_ENCODER_CNT > 0
uint8_t i = 0;
encoders[i].init(I2CPE_ENC_1_ADDR, I2CPE_ENC_1_AXIS);
#ifdef I2CPE_ENC_1_TYPE
encoders[i].set_type(I2CPE_ENC_1_TYPE);
#endif
#ifdef I2CPE_ENC_1_TICKS_UNIT
encoders[i].set_ticks_unit(I2CPE_ENC_1_TICKS_UNIT);
#endif
#ifdef I2CPE_ENC_1_TICKS_REV
encoders[i].set_stepper_ticks(I2CPE_ENC_1_TICKS_REV);
#endif
#ifdef I2CPE_ENC_1_INVERT
encoders[i].set_inverted(I2CPE_ENC_1_INVERT);
#endif
#ifdef I2CPE_ENC_1_EC_METHOD
encoders[i].set_ec_method(I2CPE_ENC_1_EC_METHOD);
#endif
#ifdef I2CPE_ENC_1_EC_THRESH
encoders[i].set_ec_threshold(I2CPE_ENC_1_EC_THRESH);
#endif
encoders[i].set_active(encoders[i].passes_test(true));
#if I2CPE_ENC_1_AXIS == E_AXIS
encoders[i].set_homed();
#endif
#endif
#if I2CPE_ENCODER_CNT > 1
i++;
encoders[i].init(I2CPE_ENC_2_ADDR, I2CPE_ENC_2_AXIS);
#ifdef I2CPE_ENC_2_TYPE
encoders[i].set_type(I2CPE_ENC_2_TYPE);
#endif
#ifdef I2CPE_ENC_2_TICKS_UNIT
encoders[i].set_ticks_unit(I2CPE_ENC_2_TICKS_UNIT);
#endif
#ifdef I2CPE_ENC_2_TICKS_REV
encoders[i].set_stepper_ticks(I2CPE_ENC_2_TICKS_REV);
#endif
#ifdef I2CPE_ENC_2_INVERT
encoders[i].set_inverted(I2CPE_ENC_2_INVERT);
#endif
#ifdef I2CPE_ENC_2_EC_METHOD
encoders[i].set_ec_method(I2CPE_ENC_2_EC_METHOD);
#endif
#ifdef I2CPE_ENC_2_EC_THRESH
encoders[i].set_ec_threshold(I2CPE_ENC_2_EC_THRESH);
#endif
encoders[i].set_active(encoders[i].passes_test(true));
#if I2CPE_ENC_2_AXIS == E_AXIS
encoders[i].set_homed();
#endif
#endif
#if I2CPE_ENCODER_CNT > 2
i++;
encoders[i].init(I2CPE_ENC_3_ADDR, I2CPE_ENC_3_AXIS);
#ifdef I2CPE_ENC_3_TYPE
encoders[i].set_type(I2CPE_ENC_3_TYPE);
#endif
#ifdef I2CPE_ENC_3_TICKS_UNIT
encoders[i].set_ticks_unit(I2CPE_ENC_3_TICKS_UNIT);
#endif
#ifdef I2CPE_ENC_3_TICKS_REV
encoders[i].set_stepper_ticks(I2CPE_ENC_3_TICKS_REV);
#endif
#ifdef I2CPE_ENC_3_INVERT
encoders[i].set_inverted(I2CPE_ENC_3_INVERT);
#endif
#ifdef I2CPE_ENC_3_EC_METHOD
encoders[i].set_ec_method(I2CPE_ENC_3_EC_METHOD);
#endif
#ifdef I2CPE_ENC_3_EC_THRESH
encoders[i].set_ec_threshold(I2CPE_ENC_3_EC_THRESH);
#endif
encoders[i].set_active(encoders[i].passes_test(true));
#if I2CPE_ENC_3_AXIS == E_AXIS
encoders[i].set_homed();
#endif
#endif
#if I2CPE_ENCODER_CNT > 3
i++;
encoders[i].init(I2CPE_ENC_4_ADDR, I2CPE_ENC_4_AXIS);
#ifdef I2CPE_ENC_4_TYPE
encoders[i].set_type(I2CPE_ENC_4_TYPE);
#endif
#ifdef I2CPE_ENC_4_TICKS_UNIT
encoders[i].set_ticks_unit(I2CPE_ENC_4_TICKS_UNIT);
#endif
#ifdef I2CPE_ENC_4_TICKS_REV
encoders[i].set_stepper_ticks(I2CPE_ENC_4_TICKS_REV);
#endif
#ifdef I2CPE_ENC_4_INVERT
encoders[i].set_inverted(I2CPE_ENC_4_INVERT);
#endif
#ifdef I2CPE_ENC_4_EC_METHOD
encoders[i].set_ec_method(I2CPE_ENC_4_EC_METHOD);
#endif
#ifdef I2CPE_ENC_4_EC_THRESH
encoders[i].set_ec_threshold(I2CPE_ENC_4_EC_THRESH);
#endif
encoders[i].set_active(encoders[i].passes_test(true));
#if I2CPE_ENC_4_AXIS == E_AXIS
encoders[i].set_homed();
#endif
#endif
#if I2CPE_ENCODER_CNT > 4
i++;
encoders[i].init(I2CPE_ENC_5_ADDR, I2CPE_ENC_5_AXIS);
#ifdef I2CPE_ENC_5_TYPE
encoders[i].set_type(I2CPE_ENC_5_TYPE);
#endif
#ifdef I2CPE_ENC_5_TICKS_UNIT
encoders[i].set_ticks_unit(I2CPE_ENC_5_TICKS_UNIT);
#endif
#ifdef I2CPE_ENC_5_TICKS_REV
encoders[i].set_stepper_ticks(I2CPE_ENC_5_TICKS_REV);
#endif
#ifdef I2CPE_ENC_5_INVERT
encoders[i].set_inverted(I2CPE_ENC_5_INVERT);
#endif
#ifdef I2CPE_ENC_5_EC_METHOD
encoders[i].set_ec_method(I2CPE_ENC_5_EC_METHOD);
#endif
#ifdef I2CPE_ENC_5_EC_THRESH
encoders[i].set_ec_threshold(I2CPE_ENC_5_EC_THRESH);
#endif
encoders[i].set_active(encoders[i].passes_test(true));
#if I2CPE_ENC_5_AXIS == E_AXIS
encoders[i].set_homed();
#endif
#endif
#if I2CPE_ENCODER_CNT > 5
i++;
encoders[i].init(I2CPE_ENC_6_ADDR, I2CPE_ENC_6_AXIS);
#ifdef I2CPE_ENC_6_TYPE
encoders[i].set_type(I2CPE_ENC_6_TYPE);
#endif
#ifdef I2CPE_ENC_6_TICKS_UNIT
encoders[i].set_ticks_unit(I2CPE_ENC_6_TICKS_UNIT);
#endif
#ifdef I2CPE_ENC_6_TICKS_REV
encoders[i].set_stepper_ticks(I2CPE_ENC_6_TICKS_REV);
#endif
#ifdef I2CPE_ENC_6_INVERT
encoders[i].set_inverted(I2CPE_ENC_6_INVERT);
#endif
#ifdef I2CPE_ENC_6_EC_METHOD
encoders[i].set_ec_method(I2CPE_ENC_6_EC_METHOD);
#endif
#ifdef I2CPE_ENC_6_EC_THRESH
encoders[i].set_ec_threshold(I2CPE_ENC_6_EC_THRESH);
#endif
encoders[i].set_active(encoders[i].passes_test(true));
#if I2CPE_ENC_6_AXIS == E_AXIS
encoders[i].set_homed();
#endif
#endif
}
void I2CPositionEncodersMgr::report_position(const int8_t idx, const bool units, const bool noOffset) {
CHECK_IDX();
if (units)
SERIAL_ECHOLN(noOffset ? encoders[idx].mm_from_count(encoders[idx].get_raw_count()) : encoders[idx].get_position_mm());
else {
if (noOffset) {
const int32_t raw_count = encoders[idx].get_raw_count();
SERIAL_CHAR(axis_codes[encoders[idx].get_axis()], ' ');
for (uint8_t j = 31; j > 0; j--)
SERIAL_ECHO((bool)(0x00000001 & (raw_count >> j)));
SERIAL_ECHO((bool)(0x00000001 & raw_count));
SERIAL_CHAR(' ');
SERIAL_ECHOLN(raw_count);
}
else
SERIAL_ECHOLN(encoders[idx].get_position());
}
}
void I2CPositionEncodersMgr::change_module_address(const uint8_t oldaddr, const uint8_t newaddr) {
// First check 'new' address is not in use
Wire.beginTransmission(I2C_ADDRESS(newaddr));
if (!Wire.endTransmission()) {
SERIAL_ECHOLNPAIR("?There is already a device with that address on the I2C bus! (", newaddr, ")");
return;
}
// Now check that we can find the module on the oldaddr address
Wire.beginTransmission(I2C_ADDRESS(oldaddr));
if (Wire.endTransmission()) {
SERIAL_ECHOLNPAIR("?No module detected at this address! (", oldaddr, ")");
return;
}
SERIAL_ECHOLNPAIR("Module found at ", oldaddr, ", changing address to ", newaddr);
// Change the modules address
Wire.beginTransmission(I2C_ADDRESS(oldaddr));
Wire.write(I2CPE_SET_ADDR);
Wire.write(newaddr);
Wire.endTransmission();
SERIAL_ECHOLNPGM("Address changed, resetting and waiting for confirmation..");
// Wait for the module to reset (can probably be improved by polling address with a timeout).
safe_delay(I2CPE_REBOOT_TIME);
// Look for the module at the new address.
Wire.beginTransmission(I2C_ADDRESS(newaddr));
if (Wire.endTransmission()) {
SERIAL_ECHOLNPGM("Address change failed! Check encoder module.");
return;
}
SERIAL_ECHOLNPGM("Address change successful!");
// Now, if this module is configured, find which encoder instance it's supposed to correspond to
// and enable it (it will likely have failed initialization on power-up, before the address change).
const int8_t idx = idx_from_addr(newaddr);
if (idx >= 0 && !encoders[idx].get_active()) {
SERIAL_CHAR(axis_codes[encoders[idx].get_axis()]);
SERIAL_ECHOLNPGM(" axis encoder was not detected on printer startup. Trying again.");
encoders[idx].set_active(encoders[idx].passes_test(true));
}
}
void I2CPositionEncodersMgr::report_module_firmware(const uint8_t address) {
// First check there is a module
Wire.beginTransmission(I2C_ADDRESS(address));
if (Wire.endTransmission()) {
SERIAL_ECHOLNPAIR("?No module detected at this address! (", address, ")");
return;
}
SERIAL_ECHOLNPAIR("Requesting version info from module at address ", address, ":");
Wire.beginTransmission(I2C_ADDRESS(address));
Wire.write(I2CPE_SET_REPORT_MODE);
Wire.write(I2CPE_REPORT_VERSION);
Wire.endTransmission();
// Read value
if (Wire.requestFrom(I2C_ADDRESS(address), uint8_t(32))) {
char c;
while (Wire.available() > 0 && (c = (char)Wire.read()) > 0)
SERIAL_CHAR(c);
SERIAL_EOL();
}
// Set module back to normal (distance) mode
Wire.beginTransmission(I2C_ADDRESS(address));
Wire.write(I2CPE_SET_REPORT_MODE);
Wire.write(I2CPE_REPORT_DISTANCE);
Wire.endTransmission();
}
int8_t I2CPositionEncodersMgr::parse() {
I2CPE_addr = 0;
if (parser.seen('A')) {
if (!parser.has_value()) {
SERIAL_ECHOLNPGM("?A seen, but no address specified! [30-200]");
return I2CPE_PARSE_ERR;
};
I2CPE_addr = parser.value_byte();
if (!WITHIN(I2CPE_addr, 30, 200)) { // reserve the first 30 and last 55
SERIAL_ECHOLNPGM("?Address out of range. [30-200]");
return I2CPE_PARSE_ERR;
}
I2CPE_idx = idx_from_addr(I2CPE_addr);
if (I2CPE_idx >= I2CPE_ENCODER_CNT) {
SERIAL_ECHOLNPGM("?No device with this address!");
return I2CPE_PARSE_ERR;
}
}
else if (parser.seenval('I')) {
if (!parser.has_value()) {
SERIAL_ECHOLNPAIR("?I seen, but no index specified! [0-", I2CPE_ENCODER_CNT - 1, "]");
return I2CPE_PARSE_ERR;
};
I2CPE_idx = parser.value_byte();
if (I2CPE_idx >= I2CPE_ENCODER_CNT) {
SERIAL_ECHOLNPAIR("?Index out of range. [0-", I2CPE_ENCODER_CNT - 1, "]");
return I2CPE_PARSE_ERR;
}
I2CPE_addr = encoders[I2CPE_idx].get_address();
}
else
I2CPE_idx = 0xFF;
I2CPE_anyaxis = parser.seen_axis();
return I2CPE_PARSE_OK;
};
/**
* M860: Report the position(s) of position encoder module(s).
*
* A<addr> Module I2C address. [30, 200].
* I<index> Module index. [0, I2CPE_ENCODER_CNT - 1]
* O Include homed zero-offset in returned position.
* U Units in mm or raw step count.
*
* If A or I not specified:
* X Report on X axis encoder, if present.
* Y Report on Y axis encoder, if present.
* Z Report on Z axis encoder, if present.
* E Report on E axis encoder, if present.
*/
void I2CPositionEncodersMgr::M860() {
if (parse()) return;
const bool hasU = parser.seen('U'), hasO = parser.seen('O');
if (I2CPE_idx == 0xFF) {
LOOP_XYZE(i) {
if (!I2CPE_anyaxis || parser.seen(axis_codes[i])) {
const uint8_t idx = idx_from_axis(AxisEnum(i));
if ((int8_t)idx >= 0) report_position(idx, hasU, hasO);
}
}
}
else
report_position(I2CPE_idx, hasU, hasO);
}
/**
* M861: Report the status of position encoder modules.
*
* A<addr> Module I2C address. [30, 200].
* I<index> Module index. [0, I2CPE_ENCODER_CNT - 1]
*
* If A or I not specified:
* X Report on X axis encoder, if present.
* Y Report on Y axis encoder, if present.
* Z Report on Z axis encoder, if present.
* E Report on E axis encoder, if present.
*/
void I2CPositionEncodersMgr::M861() {
if (parse()) return;
if (I2CPE_idx == 0xFF) {
LOOP_XYZE(i) {
if (!I2CPE_anyaxis || parser.seen(axis_codes[i])) {
const uint8_t idx = idx_from_axis(AxisEnum(i));
if ((int8_t)idx >= 0) report_status(idx);
}
}
}
else
report_status(I2CPE_idx);
}
/**
* M862: Perform an axis continuity test for position encoder
* modules.
*
* A<addr> Module I2C address. [30, 200].
* I<index> Module index. [0, I2CPE_ENCODER_CNT - 1]
*
* If A or I not specified:
* X Report on X axis encoder, if present.
* Y Report on Y axis encoder, if present.
* Z Report on Z axis encoder, if present.
* E Report on E axis encoder, if present.
*/
void I2CPositionEncodersMgr::M862() {
if (parse()) return;
if (I2CPE_idx == 0xFF) {
LOOP_XYZE(i) {
if (!I2CPE_anyaxis || parser.seen(axis_codes[i])) {
const uint8_t idx = idx_from_axis(AxisEnum(i));
if ((int8_t)idx >= 0) test_axis(idx);
}
}
}
else
test_axis(I2CPE_idx);
}
/**
* M863: Perform steps-per-mm calibration for
* position encoder modules.
*
* A<addr> Module I2C address. [30, 200].
* I<index> Module index. [0, I2CPE_ENCODER_CNT - 1]
* P Number of rePeats/iterations.
*
* If A or I not specified:
* X Report on X axis encoder, if present.
* Y Report on Y axis encoder, if present.
* Z Report on Z axis encoder, if present.
* E Report on E axis encoder, if present.
*/
void I2CPositionEncodersMgr::M863() {
if (parse()) return;
const uint8_t iterations = constrain(parser.byteval('P', 1), 1, 10);
if (I2CPE_idx == 0xFF) {
LOOP_XYZE(i) {
if (!I2CPE_anyaxis || parser.seen(axis_codes[i])) {
const uint8_t idx = idx_from_axis(AxisEnum(i));
if ((int8_t)idx >= 0) calibrate_steps_mm(idx, iterations);
}
}
}
else
calibrate_steps_mm(I2CPE_idx, iterations);
}
/**
* M864: Change position encoder module I2C address.
*
* A<addr> Module current/old I2C address. If not present,
* assumes default address (030). [30, 200].
* S<addr> Module new I2C address. [30, 200].
*
* If S is not specified:
* X Use I2CPE_PRESET_ADDR_X (030).
* Y Use I2CPE_PRESET_ADDR_Y (031).
* Z Use I2CPE_PRESET_ADDR_Z (032).
* E Use I2CPE_PRESET_ADDR_E (033).
*/
void I2CPositionEncodersMgr::M864() {
uint8_t newAddress;
if (parse()) return;
if (!I2CPE_addr) I2CPE_addr = I2CPE_PRESET_ADDR_X;
if (parser.seen('S')) {
if (!parser.has_value()) {
SERIAL_ECHOLNPGM("?S seen, but no address specified! [30-200]");
return;
};
newAddress = parser.value_byte();
if (!WITHIN(newAddress, 30, 200)) {
SERIAL_ECHOLNPGM("?New address out of range. [30-200]");
return;
}
}
else if (!I2CPE_anyaxis) {
SERIAL_ECHOLNPGM("?You must specify S or [XYZE].");
return;
}
else {
if (parser.seen('X')) newAddress = I2CPE_PRESET_ADDR_X;
else if (parser.seen('Y')) newAddress = I2CPE_PRESET_ADDR_Y;
else if (parser.seen('Z')) newAddress = I2CPE_PRESET_ADDR_Z;
else if (parser.seen('E')) newAddress = I2CPE_PRESET_ADDR_E;
else return;
}
SERIAL_ECHOLNPAIR("Changing module at address ", I2CPE_addr, " to address ", newAddress);
change_module_address(I2CPE_addr, newAddress);
}
/**
* M865: Check position encoder module firmware version.
*
* A<addr> Module I2C address. [30, 200].
* I<index> Module index. [0, I2CPE_ENCODER_CNT - 1].
*
* If A or I not specified:
* X Check X axis encoder, if present.
* Y Check Y axis encoder, if present.
* Z Check Z axis encoder, if present.
* E Check E axis encoder, if present.
*/
void I2CPositionEncodersMgr::M865() {
if (parse()) return;
if (!I2CPE_addr) {
LOOP_XYZE(i) {
if (!I2CPE_anyaxis || parser.seen(axis_codes[i])) {
const uint8_t idx = idx_from_axis(AxisEnum(i));
if ((int8_t)idx >= 0) report_module_firmware(encoders[idx].get_address());
}
}
}
else
report_module_firmware(I2CPE_addr);
}
/**
* M866: Report or reset position encoder module error
* count.
*
* A<addr> Module I2C address. [30, 200].
* I<index> Module index. [0, I2CPE_ENCODER_CNT - 1].
* R Reset error counter.
*
* If A or I not specified:
* X Act on X axis encoder, if present.
* Y Act on Y axis encoder, if present.
* Z Act on Z axis encoder, if present.
* E Act on E axis encoder, if present.
*/
void I2CPositionEncodersMgr::M866() {
if (parse()) return;
const bool hasR = parser.seen('R');
if (I2CPE_idx == 0xFF) {
LOOP_XYZE(i) {
if (!I2CPE_anyaxis || parser.seen(axis_codes[i])) {
const uint8_t idx = idx_from_axis(AxisEnum(i));
if ((int8_t)idx >= 0) {
if (hasR)
reset_error_count(idx, AxisEnum(i));
else
report_error_count(idx, AxisEnum(i));
}
}
}
}
else if (hasR)
reset_error_count(I2CPE_idx, encoders[I2CPE_idx].get_axis());
else
report_error_count(I2CPE_idx, encoders[I2CPE_idx].get_axis());
}
/**
* M867: Enable/disable or toggle error correction for position encoder modules.
*
* A<addr> Module I2C address. [30, 200].
* I<index> Module index. [0, I2CPE_ENCODER_CNT - 1].
* S<1|0> Enable/disable error correction. 1 enables, 0 disables. If not
* supplied, toggle.
*
* If A or I not specified:
* X Act on X axis encoder, if present.
* Y Act on Y axis encoder, if present.
* Z Act on Z axis encoder, if present.
* E Act on E axis encoder, if present.
*/
void I2CPositionEncodersMgr::M867() {
if (parse()) return;
const int8_t onoff = parser.seenval('S') ? parser.value_int() : -1;
if (I2CPE_idx == 0xFF) {
LOOP_XYZE(i) {
if (!I2CPE_anyaxis || parser.seen(axis_codes[i])) {
const uint8_t idx = idx_from_axis(AxisEnum(i));
if ((int8_t)idx >= 0) {
const bool ena = onoff == -1 ? !encoders[I2CPE_idx].get_ec_enabled() : !!onoff;
enable_ec(idx, ena, AxisEnum(i));
}
}
}
}
else {
const bool ena = onoff == -1 ? !encoders[I2CPE_idx].get_ec_enabled() : !!onoff;
enable_ec(I2CPE_idx, ena, encoders[I2CPE_idx].get_axis());
}
}
/**
* M868: Report or set position encoder module error correction
* threshold.
*
* A<addr> Module I2C address. [30, 200].
* I<index> Module index. [0, I2CPE_ENCODER_CNT - 1].
* T New error correction threshold.
*
* If A not specified:
* X Act on X axis encoder, if present.
* Y Act on Y axis encoder, if present.
* Z Act on Z axis encoder, if present.
* E Act on E axis encoder, if present.
*/
void I2CPositionEncodersMgr::M868() {
if (parse()) return;
const float newThreshold = parser.seenval('T') ? parser.value_float() : -9999;
if (I2CPE_idx == 0xFF) {
LOOP_XYZE(i) {
if (!I2CPE_anyaxis || parser.seen(axis_codes[i])) {
const uint8_t idx = idx_from_axis(AxisEnum(i));
if ((int8_t)idx >= 0) {
if (newThreshold != -9999)
set_ec_threshold(idx, newThreshold, encoders[idx].get_axis());
else
get_ec_threshold(idx, encoders[idx].get_axis());
}
}
}
}
else if (newThreshold != -9999)
set_ec_threshold(I2CPE_idx, newThreshold, encoders[I2CPE_idx].get_axis());
else
get_ec_threshold(I2CPE_idx, encoders[I2CPE_idx].get_axis());
}
/**
* M869: Report position encoder module error.
*
* A<addr> Module I2C address. [30, 200].
* I<index> Module index. [0, I2CPE_ENCODER_CNT - 1].
*
* If A not specified:
* X Act on X axis encoder, if present.
* Y Act on Y axis encoder, if present.
* Z Act on Z axis encoder, if present.
* E Act on E axis encoder, if present.
*/
void I2CPositionEncodersMgr::M869() {
if (parse()) return;
if (I2CPE_idx == 0xFF) {
LOOP_XYZE(i) {
if (!I2CPE_anyaxis || parser.seen(axis_codes[i])) {
const uint8_t idx = idx_from_axis(AxisEnum(i));
if ((int8_t)idx >= 0) report_error(idx);
}
}
}
else
report_error(I2CPE_idx);
}
#endif // I2C_POSITION_ENCODERS