Firmware2/Marlin/src/feature/prusa_MMU2/mmu2.cpp
2019-02-12 15:55:47 -06:00

905 lines
21 KiB
C++

/**
* Marlin 3D Printer Firmware
* Copyright (C) 2019 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
#include "../../inc/MarlinConfig.h"
#if ENABLED(PRUSA_MMU2)
#include "mmu2.h"
#include "../../lcd/menu/menu_mmu2.h"
MMU2 mmu2;
#include "../../gcode/gcode.h"
#include "../../lcd/ultralcd.h"
#include "../../libs/buzzer.h"
#include "../../libs/nozzle.h"
#include "../../module/temperature.h"
#include "../../module/planner.h"
#include "../../module/stepper_indirection.h"
#include "../../Marlin.h"
#if ENABLED(HOST_PROMPT_SUPPORT)
#include "../../feature/host_actions.h"
#endif
#define MMU_TODELAY 100
#define MMU_TIMEOUT 10
#define MMU_CMD_TIMEOUT 60000ul //5min timeout for mmu commands (except P0)
#define MMU_P0_TIMEOUT 3000ul //timeout for P0 command: 3seconds
#define MMU_CMD_NONE 0
#define MMU_CMD_T0 0x10
#define MMU_CMD_T1 0x11
#define MMU_CMD_T2 0x12
#define MMU_CMD_T3 0x13
#define MMU_CMD_T4 0x14
#define MMU_CMD_L0 0x20
#define MMU_CMD_L1 0x21
#define MMU_CMD_L2 0x22
#define MMU_CMD_L3 0x23
#define MMU_CMD_L4 0x24
#define MMU_CMD_C0 0x30
#define MMU_CMD_U0 0x40
#define MMU_CMD_E0 0x50
#define MMU_CMD_E1 0x51
#define MMU_CMD_E2 0x52
#define MMU_CMD_E3 0x53
#define MMU_CMD_E4 0x54
#define MMU_CMD_R0 0x60
#define MMU_CMD_F0 0x70
#define MMU_CMD_F1 0x71
#define MMU_CMD_F2 0x72
#define MMU_CMD_F3 0x73
#define MMU_CMD_F4 0x74
#if ENABLED(MMU2_MODE_12V)
#define MMU_REQUIRED_FW_BUILDNR 132
#else
#define MMU_REQUIRED_FW_BUILDNR 126
#endif
#define MMU2_NO_TOOL 99
#define MMU_BAUD 115200
#define mmuSerial MMU2_SERIAL
bool MMU2::enabled, MMU2::ready, MMU2::mmu_print_saved;
uint8_t MMU2::cmd, MMU2::cmd_arg, MMU2::last_cmd, MMU2::extruder;
int8_t MMU2::state = 0;
volatile int8_t MMU2::finda = 1;
volatile bool MMU2::findaRunoutValid;
int16_t MMU2::version = -1, MMU2::buildnr = -1;
millis_t MMU2::last_request, MMU2::next_P0_request;
char MMU2::rx_buffer[16], MMU2::tx_buffer[16];
#if HAS_LCD_MENU && ENABLED(MMU2_MENUS)
struct E_Step {
float extrude; //!< extrude distance in mm
float feedRate; //!< feed rate in mm/s
};
static constexpr E_Step ramming_sequence[] PROGMEM = { MMU2_RAMMING_SEQUENCE };
static constexpr E_Step loadToNozzle_sequence[] PROGMEM = { MMU2_LOAD_TO_NOZZLE_SEQUENCE };
#endif // MMU2_MENUS
MMU2::MMU2() {
rx_buffer[0] = '\0';
}
void MMU2::init() {
set_runout_valid(false);
#if PIN_EXISTS(MMU2_RST)
// TODO use macros for this
WRITE(MMU2_RST_PIN, HIGH);
SET_OUTPUT(MMU2_RST_PIN);
#endif
mmuSerial.begin(MMU_BAUD);
extruder = MMU2_NO_TOOL;
safe_delay(10);
reset();
rx_buffer[0] = '\0';
state = -1;
}
void MMU2::reset() {
#if ENABLED(MMU2_DEBUG)
SERIAL_ECHOLNPGM("MMU <= reset");
#endif
#if PIN_EXISTS(MMU2_RST)
WRITE(MMU2_RST_PIN, LOW);
safe_delay(20);
WRITE(MMU2_RST_PIN, HIGH);
#else
tx_str_P(PSTR("X0\n")); // Send soft reset
#endif
}
uint8_t MMU2::getCurrentTool() {
return extruder == MMU2_NO_TOOL ? -1 : extruder;
}
void MMU2::mmuLoop() {
switch (state) {
case 0: break;
case -1:
if (rx_start()) {
#if ENABLED(MMU2_DEBUG)
SERIAL_ECHOLNPGM("MMU => 'start'");
SERIAL_ECHOLNPGM("MMU <= 'S1'");
#endif
// send "read version" request
tx_str_P(PSTR("S1\n"));
state = -2;
}
else if (millis() > 3000000) {
SERIAL_ECHOLNPGM("MMU not responding - DISABLED");
state = 0;
}
break;
case -2:
if (rx_ok()) {
sscanf(rx_buffer, "%uok\n", &version);
#if ENABLED(MMU2_DEBUG)
SERIAL_ECHOLNPAIR("MMU => ", version);
SERIAL_ECHOLNPGM("MMU <= 'S2'");
#endif
tx_str_P(PSTR("S2\n")); // read build number
state = -3;
}
break;
case -3:
if (rx_ok()) {
sscanf(rx_buffer, "%uok\n", &buildnr);
#if ENABLED(MMU2_DEBUG)
SERIAL_ECHOLNPAIR("MMU => ", buildnr);
#endif
checkVersion();
#if ENABLED(MMU2_MODE_12V)
#if ENABLED(MMU2_DEBUG)
SERIAL_ECHOLNPGM("MMU <= 'M1'");
#endif
tx_str_P(PSTR("M1\n")); // switch to stealth mode
state = -5;
#else
#if ENABLED(MMU2_DEBUG)
SERIAL_ECHOLNPGM("MMU <= 'P0'");
#endif
tx_str_P(PSTR("P0\n")); // read finda
state = -4;
#endif
}
break;
case -5:
// response to M1
if (rx_ok()) {
#if ENABLED(MMU2_DEBUG)
SERIAL_ECHOLNPGM("MMU => ok");
#endif
checkVersion();
#if ENABLED(MMU2_DEBUG)
SERIAL_ECHOLNPGM("MMU <= 'P0'");
#endif
tx_str_P(PSTR("P0\n")); // read finda
state = -4;
}
break;
case -4:
if (rx_ok()) {
sscanf(rx_buffer, "%hhuok\n", &finda);
#if ENABLED(MMU2_DEBUG)
SERIAL_ECHOLNPAIR("MMU => ", finda);
SERIAL_ECHOLNPGM("MMU - ENABLED");
#endif
enabled = true;
state = 1;
}
break;
case 1:
if (cmd) {
if (WITHIN(cmd, MMU_CMD_T0, MMU_CMD_T4)) {
// tool change
int filament = cmd - MMU_CMD_T0;
#if ENABLED(MMU2_DEBUG)
SERIAL_ECHOLNPAIR("MMU <= T", filament);
#endif
tx_printf_P(PSTR("T%d\n"), filament);
state = 3; // wait for response
}
else if (WITHIN(cmd, MMU_CMD_L0, MMU_CMD_L4)) {
// load
int filament = cmd - MMU_CMD_L0;
#if ENABLED(MMU2_DEBUG)
SERIAL_ECHOLNPAIR("MMU <= L", filament);
#endif
tx_printf_P(PSTR("L%d\n"), filament);
state = 3; // wait for response
}
else if (cmd == MMU_CMD_C0) {
// continue loading
#if ENABLED(MMU2_DEBUG)
SERIAL_ECHOLNPGM("MMU <= 'C0'");
#endif
tx_str_P(PSTR("C0\n"));
state = 3; // wait for response
}
else if (cmd == MMU_CMD_U0) {
// unload current
#if ENABLED(MMU2_DEBUG)
SERIAL_ECHOLNPGM("MMU <= 'U0'");
#endif
tx_str_P(PSTR("U0\n"));
state = 3; // wait for response
}
else if (WITHIN(cmd, MMU_CMD_E0, MMU_CMD_E4)) {
// eject filament
int filament = cmd - MMU_CMD_E0;
#if ENABLED(MMU2_DEBUG)
SERIAL_ECHOLNPAIR("MMU <= E", filament);
#endif
tx_printf_P(PSTR("E%d\n"), filament);
state = 3; // wait for response
}
else if (cmd == MMU_CMD_R0) {
// recover after eject
#if ENABLED(MMU2_DEBUG)
SERIAL_ECHOLNPGM("MMU <= 'R0'");
#endif
tx_str_P(PSTR("R0\n"));
state = 3; // wait for response
}
else if (WITHIN(cmd, MMU_CMD_F0, MMU_CMD_F4)) {
// filament type
int filament = cmd - MMU_CMD_F0;
#if ENABLED(MMU2_DEBUG)
SERIAL_ECHOPAIR("MMU <= F", filament);
SERIAL_ECHOPGM(" ");
SERIAL_ECHO_F(cmd_arg, DEC);
SERIAL_ECHOPGM("\n");
#endif
tx_printf_P(PSTR("F%d %d\n"), filament, cmd_arg);
state = 3; // wait for response
}
last_cmd = cmd;
cmd = MMU_CMD_NONE;
}
else if (ELAPSED(millis(), next_P0_request)) {
// read FINDA
tx_str_P(PSTR("P0\n"));
state = 2; // wait for response
}
break;
case 2: // response to command P0
if (rx_ok()) {
sscanf(rx_buffer, "%hhuok\n", &finda);
#if ENABLED(MMU2_DEBUG)
// This is super annoying. Only activate if necessary
/*
if (findaRunoutValid) {
SERIAL_ECHOLNPGM("MMU <= 'P0'");
SERIAL_ECHOPGM("MMU => ");
SERIAL_ECHO_F(finda, DEC);
SERIAL_ECHOPGM("\n");
}
*/
#endif
state = 1;
if (cmd == 0) ready = true;
if (!finda && findaRunoutValid) filamentRunout();
}
else if (ELAPSED(millis(), last_request + MMU_P0_TIMEOUT)) // Resend request after timeout (30s)
state = 1;
break;
case 3: // response to mmu commands
if (rx_ok()) {
#if ENABLED(MMU2_DEBUG)
SERIAL_ECHOLNPGM("MMU => 'ok'");
#endif
ready = true;
state = 1;
last_cmd = MMU_CMD_NONE;
}
else if (ELAPSED(millis(), last_request + MMU_CMD_TIMEOUT)) {
// resend request after timeout
if (last_cmd) {
#if ENABLED(MMU2_DEBUG)
SERIAL_ECHOLNPGM("MMU retry");
#endif
cmd = last_cmd;
last_cmd = MMU_CMD_NONE;
}
state = 1;
}
break;
}
}
/**
* Check if MMU was started
*/
bool MMU2::rx_start() {
// check for start message
if (rx_str_P(PSTR("start\n"))) {
next_P0_request = millis() + 300;
return true;
}
return false;
}
/**
* Check if the data received ends with the given string.
*/
bool MMU2::rx_str_P(const char* str) {
uint8_t i = strlen(rx_buffer);
while (mmuSerial.available()) {
rx_buffer[i++] = mmuSerial.read();
rx_buffer[i] = '\0';
if (i == sizeof(rx_buffer) - 1) {
#if ENABLED(MMU2_DEBUG)
SERIAL_ECHOLNPGM("rx buffer overrun");
#endif
break;
}
}
uint8_t len = strlen_P(str);
if (i < len) return false;
str += len;
while (len--) {
char c0 = pgm_read_byte(str--), c1 = rx_buffer[i--];
if (c0 == c1) continue;
if (c0 == '\r' && c1 == '\n') continue; // match cr as lf
if (c0 == '\n' && c1 == '\r') continue; // match lf as cr
return false;
}
return true;
}
/**
* Transfer data to MMU, no argument
*/
void MMU2::tx_str_P(const char* str) {
clear_rx_buffer();
uint8_t len = strlen_P(str);
for (uint8_t i = 0; i < len; i++) mmuSerial.write(pgm_read_byte(str++));
rx_buffer[0] = '\0';
last_request = millis();
}
/**
* Transfer data to MMU, single argument
*/
void MMU2::tx_printf_P(const char* format, int argument = -1) {
clear_rx_buffer();
uint8_t len = sprintf_P(tx_buffer, format, argument);
for (uint8_t i = 0; i < len; i++) mmuSerial.write(tx_buffer[i]);
rx_buffer[0] = '\0';
last_request = millis();
}
/**
* Transfer data to MMU, two arguments
*/
void MMU2::tx_printf_P(const char* format, int argument1, int argument2) {
clear_rx_buffer();
uint8_t len = sprintf_P(tx_buffer, format, argument1, argument2);
for (uint8_t i = 0; i < len; i++) mmuSerial.write(tx_buffer[i]);
rx_buffer[0] = '\0';
last_request = millis();
}
/**
* Empty the rx buffer
*/
void MMU2::clear_rx_buffer() {
while (mmuSerial.available()) mmuSerial.read();
rx_buffer[0] = '\0';
}
/**
* Check if we received 'ok' from MMU
*/
bool MMU2::rx_ok() {
if (rx_str_P(PSTR("ok\n"))) {
next_P0_request = millis() + 300;
return true;
}
return false;
}
/**
* Check if MMU has compatible firmware
*/
void MMU2::checkVersion() {
if (buildnr < MMU_REQUIRED_FW_BUILDNR) {
SERIAL_ERROR_START();
SERIAL_ECHOPGM("MMU2 firmware version invalid. Required version >= ");
SERIAL_ECHOLN(MMU_REQUIRED_FW_BUILDNR);
kill(MSG_MMU2_WRONG_FIRMWARE);
}
}
/**
* Handle tool change
*/
void MMU2::toolChange(uint8_t index) {
if (!enabled) return;
set_runout_valid(false);
if (index != extruder) {
KEEPALIVE_STATE(IN_HANDLER);
disable_E0();
ui.status_printf_P(0, PSTR(MSG_MMU2_LOADING_FILAMENT), int(index + 1));
command(MMU_CMD_T0 + index);
manageResponse(true, true);
KEEPALIVE_STATE(IN_HANDLER);
command(MMU_CMD_C0);
extruder = index; //filament change is finished
active_extruder = 0;
enable_E0();
SERIAL_ECHO_START();
SERIAL_ECHOLNPAIR(MSG_ACTIVE_EXTRUDER, int(extruder));
ui.reset_status();
KEEPALIVE_STATE(NOT_BUSY);
}
set_runout_valid(true);
}
/**
*
* Handle special T?/Tx/Tc commands
*
* T? Gcode to extrude shouldn't have to follow, load to extruder wheels is done automatically
* Tx Same as T?, except nozzle doesn't have to be preheated. Tc must be placed after extruder nozzle is preheated to finish filament load.
* Tc Load to nozzle after filament was prepared by Tx and extruder nozzle is already heated.
*
*/
void MMU2::toolChange(const char* special) {
if (!enabled) return;
#if ENABLED(MMU2_MENUS)
set_runout_valid(false);
KEEPALIVE_STATE(IN_HANDLER);
switch(*special) {
case '?': {
uint8_t index = mmu2_chooseFilament();
while (!thermalManager.wait_for_hotend(active_extruder, false)) safe_delay(100);
loadFilamentToNozzle(index);
} break;
case 'x': {
planner.synchronize();
uint8_t index = mmu2_chooseFilament();
disable_E0();
command(MMU_CMD_T0 + index);
manageResponse(true, true);
command(MMU_CMD_C0);
mmuLoop();
enable_E0();
extruder = index;
active_extruder = 0;
} break;
case 'c': {
while (!thermalManager.wait_for_hotend(active_extruder, false)) safe_delay(100);
executeExtruderSequence((const E_Step *)loadToNozzle_sequence, COUNT(loadToNozzle_sequence));
} break;
}
KEEPALIVE_STATE(NOT_BUSY);
set_runout_valid(true);
#endif
}
/**
* Set next command
*/
void MMU2::command(const uint8_t mmu_cmd) {
if (!enabled) return;
cmd = mmu_cmd;
ready = false;
}
/**
* Wait for response from MMU
*/
bool MMU2::getResponse(void) {
while (cmd != MMU_CMD_NONE) idle();
while (!ready) {
idle();
if (state != 3) break;
}
const bool ret = ready;
ready = false;
return ret;
}
/**
* Wait for response and deal with timeout if nexcessary
*/
void MMU2::manageResponse(bool move_axes, bool turn_off_nozzle) {
bool response = false;
mmu_print_saved = false;
point_t park_point = NOZZLE_PARK_POINT;
float resume_position[XYZE];
int16_t resume_hotend_temp;
while (!response) {
response = getResponse(); //wait for "ok" from mmu
if (!response) { //no "ok" was received in reserved time frame, user will fix the issue on mmu unit
if (!mmu_print_saved) { //first occurence, we are saving current position, park print head in certain position and disable nozzle heater
planner.synchronize();
mmu_print_saved = true;
SERIAL_ECHOLNPGM("MMU not responding");
resume_hotend_temp = thermalManager.degTargetHotend(active_extruder);
COPY(resume_position, current_position);
if (move_axes && all_axes_homed())
Nozzle::park(2, park_point /*= NOZZLE_PARK_POINT*/);
if (turn_off_nozzle) thermalManager.setTargetHotend(0, active_extruder);
LCD_MESSAGEPGM(MSG_MMU2_NOT_RESPONDING);
BUZZ(100, 659);
BUZZ(200, 698);
BUZZ(100, 659);
BUZZ(300, 440);
BUZZ(100, 659);
KEEPALIVE_STATE(PAUSED_FOR_USER);
}
}
else if (mmu_print_saved) {
SERIAL_ECHOLNPGM("MMU starts responding\n");
KEEPALIVE_STATE(IN_HANDLER);
if (turn_off_nozzle && resume_hotend_temp) {
thermalManager.setTargetHotend(resume_hotend_temp, active_extruder);
LCD_MESSAGEPGM(MSG_HEATING);
BUZZ(200, 40);
while (!thermalManager.wait_for_hotend(active_extruder, false)) safe_delay(1000);
}
if (move_axes && all_axes_homed()) {
LCD_MESSAGEPGM(MSG_MMU2_RESUMING);
BUZZ(200, 404);
BUZZ(200, 404);
// Move XY to starting position, then Z
do_blocking_move_to_xy(resume_position[X_AXIS], resume_position[Y_AXIS], NOZZLE_PARK_XY_FEEDRATE);
// Move Z_AXIS to saved position
do_blocking_move_to_z(resume_position[Z_AXIS], NOZZLE_PARK_Z_FEEDRATE);
}
else {
BUZZ(200, 404);
BUZZ(200, 404);
LCD_MESSAGEPGM(MSG_MMU2_RESUMING);
}
}
}
}
void MMU2::setFilamentType(uint8_t index, uint8_t filamentType) {
if (!enabled) return;
KEEPALIVE_STATE(IN_HANDLER);
cmd_arg = filamentType;
command(MMU_CMD_F0 + index);
manageResponse(true, true);
KEEPALIVE_STATE(NOT_BUSY);
}
void MMU2::filamentRunout() {
enqueue_and_echo_commands_P(PSTR(MMU2_FILAMENT_RUNOUT_SCRIPT));
planner.synchronize();
}
#if HAS_LCD_MENU && ENABLED(MMU2_MENUS)
// Load filament into MMU2
void MMU2::loadFilament(uint8_t index) {
if (!enabled) return;
command(MMU_CMD_L0 + index);
manageResponse(false, false);
BUZZ(200, 404);
}
/**
*
* Switch material and load to nozzle
*
*/
bool MMU2::loadFilamentToNozzle(uint8_t index) {
if (!enabled) return false;
if (thermalManager.tooColdToExtrude(active_extruder)) {
BUZZ(200, 404);
LCD_ALERTMESSAGEPGM(MSG_HOTEND_TOO_COLD);
return false;
}
else {
KEEPALIVE_STATE(IN_HANDLER);
command(MMU_CMD_T0 + index);
manageResponse(true, true);
command(MMU_CMD_C0);
mmuLoop();
extruder = index;
active_extruder = 0;
loadToNozzle();
BUZZ(200, 404);
KEEPALIVE_STATE(NOT_BUSY);
return true;
}
}
/**
*
* Load filament to nozzle of multimaterial printer
*
* This function is used only only after T? (user select filament) and M600 (change filament).
* It is not used after T0 .. T4 command (select filament), in such case, gcode is responsible for loading
* filament to nozzle.
*/
void MMU2::loadToNozzle() {
if (!enabled) return;
executeExtruderSequence((const E_Step *)loadToNozzle_sequence, COUNT(loadToNozzle_sequence));
}
bool MMU2::ejectFilament(uint8_t index, bool recover) {
if (!enabled) return false;
if (thermalManager.tooColdToExtrude(active_extruder)) {
BUZZ(200, 404);
LCD_ALERTMESSAGEPGM(MSG_HOTEND_TOO_COLD);
return false;
}
KEEPALIVE_STATE(IN_HANDLER);
LCD_MESSAGEPGM(MSG_MMU2_EJECTING_FILAMENT);
const bool saved_e_relative_mode = gcode.axis_relative_modes[E_AXIS];
gcode.axis_relative_modes[E_AXIS] = true;
enable_E0();
current_position[E_AXIS] -= MMU2_FILAMENTCHANGE_EJECT_FEED;
planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2500 / 60, active_extruder);
planner.synchronize();
command(MMU_CMD_E0 + index);
manageResponse(false, false);
if (recover) {
LCD_MESSAGEPGM(MSG_MMU2_EJECT_RECOVER);
BUZZ(200, 404);
wait_for_user = true;
#if ENABLED(HOST_PROMPT_SUPPORT)
host_prompt_do(PROMPT_USER_CONTINUE, PSTR("MMU2 Eject Recover"), PSTR("Continue"));
#endif
while (wait_for_user) idle();
BUZZ(200, 404);
BUZZ(200, 404);
command(MMU_CMD_R0);
manageResponse(false, false);
}
ui.reset_status();
// no active tool
extruder = MMU2_NO_TOOL;
set_runout_valid(false);
BUZZ(200, 404);
KEEPALIVE_STATE(NOT_BUSY);
gcode.axis_relative_modes[E_AXIS] = saved_e_relative_mode;
disable_E0();
return true;
}
/**
*
* unload from hotend and retract to MMU
*
*/
bool MMU2::unload() {
if (!enabled) return false;
if (thermalManager.tooColdToExtrude(active_extruder)) {
BUZZ(200, 404);
LCD_ALERTMESSAGEPGM(MSG_HOTEND_TOO_COLD);
return false;
}
KEEPALIVE_STATE(IN_HANDLER);
filamentRamming();
command(MMU_CMD_U0);
manageResponse(false, true);
BUZZ(200, 404);
// no active tool
extruder = MMU2_NO_TOOL;
set_runout_valid(false);
KEEPALIVE_STATE(NOT_BUSY);
return true;
}
/**
* Unload sequence to optimize shape of the tip of the unloaded filament
*/
void MMU2::filamentRamming() {
executeExtruderSequence((const E_Step *)ramming_sequence, sizeof(ramming_sequence) / sizeof(E_Step));
}
void MMU2::executeExtruderSequence(const E_Step * sequence, int steps) {
planner.synchronize();
enable_E0();
const bool saved_e_relative_mode = gcode.axis_relative_modes[E_AXIS];
gcode.axis_relative_modes[E_AXIS] = true;
const E_Step* step = sequence;
for (uint8_t i = 0; i < steps; i++) {
const float es = pgm_read_float(&(step->extrude)),
fr = pgm_read_float(&(step->feedRate));
#if ENABLED(MMU2_DEBUG)
SERIAL_ECHO_START();
SERIAL_ECHOPAIR("E step ", es);
SERIAL_CHAR('/');
SERIAL_ECHOLN(fr);
#endif
current_position[E_AXIS] += es;
planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
current_position[E_AXIS], MMM_TO_MMS(fr), active_extruder);
planner.synchronize();
step++;
}
gcode.axis_relative_modes[E_AXIS] = saved_e_relative_mode;
disable_E0();
}
#endif // HAS_LCD_MENU && MMU2_MENUS
#endif // PRUSA_MMU2