Firmware2/Marlin/src/gcode/calibrate/M48.cpp
X-Ryl669 e7c711996b
Serial refactor. Default 8-bit ECHO to int, not char (#20985)
Co-authored-by: Scott Lahteine <thinkyhead@users.noreply.github.com>
2021-02-08 00:37:24 -06:00

276 lines
8.8 KiB
C++

/**
* Marlin 3D Printer Firmware
* Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*
*/
#include "../../inc/MarlinConfig.h"
#if ENABLED(Z_MIN_PROBE_REPEATABILITY_TEST)
#include "../gcode.h"
#include "../../module/motion.h"
#include "../../module/probe.h"
#include "../../lcd/marlinui.h"
#include "../../feature/bedlevel/bedlevel.h"
#if HAS_LEVELING
#include "../../module/planner.h"
#endif
/**
* M48: Z probe repeatability measurement function.
*
* Usage:
* M48 <P#> <X#> <Y#> <V#> <E> <L#> <S>
* P = Number of sampled points (4-50, default 10)
* X = Sample X position
* Y = Sample Y position
* V = Verbose level (0-4, default=1)
* E = Engage Z probe for each reading
* L = Number of legs of movement before probe
* S = Schizoid (Or Star if you prefer)
*
* This function requires the machine to be homed before invocation.
*/
void GcodeSuite::M48() {
if (homing_needed_error()) return;
const int8_t verbose_level = parser.byteval('V', 1);
if (!WITHIN(verbose_level, 0, 4)) {
SERIAL_ECHOLNPGM("?(V)erbose level implausible (0-4).");
return;
}
if (verbose_level > 0)
SERIAL_ECHOLNPGM("M48 Z-Probe Repeatability Test");
const int8_t n_samples = parser.byteval('P', 10);
if (!WITHIN(n_samples, 4, 50)) {
SERIAL_ECHOLNPGM("?Sample size not plausible (4-50).");
return;
}
const ProbePtRaise raise_after = parser.boolval('E') ? PROBE_PT_STOW : PROBE_PT_RAISE;
// Test at the current position by default, overridden by X and Y
const xy_pos_t test_position = {
parser.linearval('X', current_position.x + probe.offset_xy.x), // If no X use the probe's current X position
parser.linearval('Y', current_position.y + probe.offset_xy.y) // If no Y, ditto
};
if (!probe.can_reach(test_position)) {
ui.set_status_P(GET_TEXT(MSG_M48_OUT_OF_BOUNDS), 99);
SERIAL_ECHOLNPGM("? (X,Y) out of bounds.");
return;
}
// Get the number of leg moves per test-point
bool seen_L = parser.seen('L');
uint8_t n_legs = seen_L ? parser.value_byte() : 0;
if (n_legs > 15) {
SERIAL_ECHOLNPGM("?Legs of movement implausible (0-15).");
return;
}
if (n_legs == 1) n_legs = 2;
// Schizoid motion as an optional stress-test
const bool schizoid_flag = parser.boolval('S');
if (schizoid_flag && !seen_L) n_legs = 7;
if (verbose_level > 2)
SERIAL_ECHOLNPGM("Positioning the probe...");
// Always disable Bed Level correction before probing...
#if HAS_LEVELING
const bool was_enabled = planner.leveling_active;
set_bed_leveling_enabled(false);
#endif
// Work with reasonable feedrates
remember_feedrate_scaling_off();
// Working variables
float mean = 0.0, // The average of all points so far, used to calculate deviation
sigma = 0.0, // Standard deviation of all points so far
min = 99999.9, // Smallest value sampled so far
max = -99999.9, // Largest value sampled so far
sample_set[n_samples]; // Storage for sampled values
auto dev_report = [](const bool verbose, const float &mean, const float &sigma, const float &min, const float &max, const bool final=false) {
if (verbose) {
SERIAL_ECHOPAIR_F("Mean: ", mean, 6);
if (!final) SERIAL_ECHOPAIR_F(" Sigma: ", sigma, 6);
SERIAL_ECHOPAIR_F(" Min: ", min, 3);
SERIAL_ECHOPAIR_F(" Max: ", max, 3);
SERIAL_ECHOPAIR_F(" Range: ", max-min, 3);
if (final) SERIAL_EOL();
}
if (final) {
SERIAL_ECHOLNPAIR_F("Standard Deviation: ", sigma, 6);
SERIAL_EOL();
}
};
// Move to the first point, deploy, and probe
const float t = probe.probe_at_point(test_position, raise_after, verbose_level);
bool probing_good = !isnan(t);
if (probing_good) {
randomSeed(millis());
float sample_sum = 0.0;
LOOP_L_N(n, n_samples) {
#if HAS_WIRED_LCD
// Display M48 progress in the status bar
ui.status_printf_P(0, PSTR(S_FMT ": %d/%d"), GET_TEXT(MSG_M48_POINT), int(n + 1), int(n_samples));
#endif
// When there are "legs" of movement move around the point before probing
if (n_legs) {
// Pick a random direction, starting angle, and radius
const int dir = (random(0, 10) > 5.0) ? -1 : 1; // clockwise or counter clockwise
float angle = random(0, 360);
const float radius = random(
#if ENABLED(DELTA)
int(0.1250000000 * (DELTA_PRINTABLE_RADIUS)),
int(0.3333333333 * (DELTA_PRINTABLE_RADIUS))
#else
int(5), int(0.125 * _MIN(X_BED_SIZE, Y_BED_SIZE))
#endif
);
if (verbose_level > 3) {
SERIAL_ECHOPAIR("Start radius:", radius, " angle:", angle, " dir:");
if (dir > 0) SERIAL_CHAR('C');
SERIAL_ECHOLNPGM("CW");
}
// Move from leg to leg in rapid succession
LOOP_L_N(l, n_legs - 1) {
// Move some distance around the perimeter
float delta_angle;
if (schizoid_flag) {
// The points of a 5 point star are 72 degrees apart.
// Skip a point and go to the next one on the star.
delta_angle = dir * 2.0 * 72.0;
}
else {
// Just move further along the perimeter.
delta_angle = dir * (float)random(25, 45);
}
angle += delta_angle;
// Trig functions work without clamping, but just to be safe...
while (angle > 360.0) angle -= 360.0;
while (angle < 0.0) angle += 360.0;
// Choose the next position as an offset to chosen test position
const xy_pos_t noz_pos = test_position - probe.offset_xy;
xy_pos_t next_pos = {
noz_pos.x + float(cos(RADIANS(angle))) * radius,
noz_pos.y + float(sin(RADIANS(angle))) * radius
};
#if ENABLED(DELTA)
// If the probe can't reach the point on a round bed...
// Simply scale the numbers to bring them closer to origin.
while (!probe.can_reach(next_pos)) {
next_pos *= 0.8f;
if (verbose_level > 3)
SERIAL_ECHOLNPAIR_P(PSTR("Moving inward: X"), next_pos.x, SP_Y_STR, next_pos.y);
}
#else
// For a rectangular bed just keep the probe in bounds
LIMIT(next_pos.x, X_MIN_POS, X_MAX_POS);
LIMIT(next_pos.y, Y_MIN_POS, Y_MAX_POS);
#endif
if (verbose_level > 3)
SERIAL_ECHOLNPAIR_P(PSTR("Going to: X"), next_pos.x, SP_Y_STR, next_pos.y);
do_blocking_move_to_xy(next_pos);
} // n_legs loop
} // n_legs
// Probe a single point
const float pz = probe.probe_at_point(test_position, raise_after, 0);
// Break the loop if the probe fails
probing_good = !isnan(pz);
if (!probing_good) break;
// Store the new sample
sample_set[n] = pz;
// Keep track of the largest and smallest samples
NOMORE(min, pz);
NOLESS(max, pz);
// Get the mean value of all samples thus far
sample_sum += pz;
mean = sample_sum / (n + 1);
// Calculate the standard deviation so far.
// The value after the last sample will be the final output.
float dev_sum = 0.0;
LOOP_LE_N(j, n) dev_sum += sq(sample_set[j] - mean);
sigma = SQRT(dev_sum / (n + 1));
if (verbose_level > 1) {
SERIAL_ECHO(n + 1);
SERIAL_ECHOPAIR(" of ", n_samples);
SERIAL_ECHOPAIR_F(": z: ", pz, 3);
SERIAL_CHAR(' ');
dev_report(verbose_level > 2, mean, sigma, min, max);
SERIAL_EOL();
}
} // n_samples loop
}
probe.stow();
if (probing_good) {
SERIAL_ECHOLNPGM("Finished!");
dev_report(verbose_level > 0, mean, sigma, min, max, true);
#if HAS_WIRED_LCD
// Display M48 results in the status bar
char sigma_str[8];
ui.status_printf_P(0, PSTR(S_FMT ": %s"), GET_TEXT(MSG_M48_DEVIATION), dtostrf(sigma, 2, 6, sigma_str));
#endif
}
restore_feedrate_and_scaling();
// Re-enable bed level correction if it had been on
TERN_(HAS_LEVELING, set_bed_leveling_enabled(was_enabled));
report_current_position();
}
#endif // Z_MIN_PROBE_REPEATABILITY_TEST