Firmware/Marlin/Marlin_main.cpp

15385 lines
504 KiB
C++
Raw Normal View History

/**
2016-03-24 19:01:20 +01:00
* Marlin 3D Printer Firmware
2017-03-18 16:15:54 +01:00
* Copyright (C) 2016, 2017 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
2016-03-24 19:01:20 +01:00
*
*/
/**
* About Marlin
*
* This firmware is a mashup between Sprinter and grbl.
* - https://github.com/kliment/Sprinter
2018-02-06 03:31:02 +01:00
* - https://github.com/grbl/grbl
*/
2012-11-21 20:53:56 +01:00
2015-04-14 02:17:36 +02:00
/**
2016-11-19 04:54:38 +01:00
* -----------------
* G-Codes in Marlin
* -----------------
*
* Helpful G-code references:
2015-04-14 02:17:36 +02:00
* - http://linuxcnc.org/handbook/gcode/g-code.html
* - http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
*
2016-11-19 04:54:38 +01:00
* Help to document Marlin's G-codes online:
2015-04-14 02:17:36 +02:00
* - http://reprap.org/wiki/G-code
2016-11-19 04:54:38 +01:00
* - https://github.com/MarlinFirmware/MarlinDocumentation
*
* -----------------
2015-04-14 02:17:36 +02:00
*
* "G" Codes
*
2017-05-21 22:47:09 +02:00
* G0 -> G1
* G1 - Coordinated Movement X Y Z E
* G2 - CW ARC
* G3 - CCW ARC
* G4 - Dwell S<seconds> or P<milliseconds>
* G5 - Cubic B-spline with XYZE destination and IJPQ offsets
2018-09-09 04:17:02 +02:00
* G6 - Direct stepper move (Requires UNREGISTERED_MOVE_SUPPORT). Hangprinter defaults to relative moves. Others default to absolute moves.
* G10 - Retract filament according to settings of M207 (Requires FWRETRACT)
* G11 - Retract recover filament according to settings of M208 (Requires FWRETRACT)
* G12 - Clean tool (Requires NOZZLE_CLEAN_FEATURE)
* G17 - Select Plane XY (Requires CNC_WORKSPACE_PLANES)
* G18 - Select Plane ZX (Requires CNC_WORKSPACE_PLANES)
* G19 - Select Plane YZ (Requires CNC_WORKSPACE_PLANES)
* G20 - Set input units to inches (Requires INCH_MODE_SUPPORT)
* G21 - Set input units to millimeters (Requires INCH_MODE_SUPPORT)
* G26 - Mesh Validation Pattern (Requires G26_MESH_VALIDATION)
2017-05-21 22:47:09 +02:00
* G27 - Park Nozzle (Requires NOZZLE_PARK_FEATURE)
* G28 - Home one or more axes
* G29 - Start or continue the bed leveling probe procedure (Requires bed leveling)
2017-05-21 22:47:09 +02:00
* G30 - Single Z probe, probes bed at X Y location (defaults to current XY location)
* G31 - Dock sled (Z_PROBE_SLED only)
* G32 - Undock sled (Z_PROBE_SLED only)
* G33 - Delta Auto-Calibration (Requires DELTA_AUTO_CALIBRATION)
* G38 - Probe in any direction using the Z_MIN_PROBE (Requires G38_PROBE_TARGET)
2017-11-22 21:05:55 +01:00
* G42 - Coordinated move to a mesh point (Requires MESH_BED_LEVELING, AUTO_BED_LEVELING_BLINEAR, or AUTO_BED_LEVELING_UBL)
2017-05-21 22:47:09 +02:00
* G90 - Use Absolute Coordinates
* G91 - Use Relative Coordinates
* G92 - Set current position to coordinates given
2018-09-09 04:17:02 +02:00
* G95 - Set torque mode (Requires MECHADUINO_I2C_COMMANDS enabled)
* G96 - Set encoder reference point (Requires MECHADUINO_I2C_COMMANDS enabled)
2015-04-14 02:17:36 +02:00
*
* "M" Codes
*
* M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
2017-06-22 16:44:39 +02:00
* M1 -> M0
2017-04-07 20:52:45 +02:00
* M3 - Turn laser/spindle on, set spindle/laser speed/power, set rotation to clockwise
* M4 - Turn laser/spindle on, set spindle/laser speed/power, set rotation to counter-clockwise
* M5 - Turn laser/spindle off
2015-04-14 02:17:36 +02:00
* M17 - Enable/Power all stepper motors
* M18 - Disable all stepper motors; same as M84
* M20 - List SD card. (Requires SDSUPPORT)
* M21 - Init SD card. (Requires SDSUPPORT)
* M22 - Release SD card. (Requires SDSUPPORT)
* M23 - Select SD file: "M23 /path/file.gco". (Requires SDSUPPORT)
* M24 - Start/resume SD print. (Requires SDSUPPORT)
* M25 - Pause SD print. (Requires SDSUPPORT)
* M26 - Set SD position in bytes: "M26 S12345". (Requires SDSUPPORT)
* M27 - Report SD print status. (Requires SDSUPPORT)
* OR, with 'S<seconds>' set the SD status auto-report interval. (Requires AUTO_REPORT_SD_STATUS)
* OR, with 'C' get the current filename.
* M28 - Start SD write: "M28 /path/file.gco". (Requires SDSUPPORT)
* M29 - Stop SD write. (Requires SDSUPPORT)
* M30 - Delete file from SD: "M30 /path/file.gco"
* M31 - Report time since last M109 or SD card start to serial.
* M32 - Select file and start SD print: "M32 [S<bytepos>] !/path/file.gco#". (Requires SDSUPPORT)
* Use P to run other files as sub-programs: "M32 P !filename#"
2015-04-14 02:17:36 +02:00
* The '#' is necessary when calling from within sd files, as it stops buffer prereading
* M33 - Get the longname version of a path. (Requires LONG_FILENAME_HOST_SUPPORT)
2017-02-09 14:02:25 +01:00
* M34 - Set SD Card sorting options. (Requires SDCARD_SORT_ALPHA)
* M42 - Change pin status via gcode: M42 P<pin> S<value>. LED pin assumed if P is omitted.
* M43 - Display pin status, watch pins for changes, watch endstops & toggle LED, Z servo probe test, toggle pins
2018-02-14 12:17:48 +01:00
* M48 - Measure Z Probe repeatability: M48 P<points> X<pos> Y<pos> V<level> E<engage> L<legs> S<chizoid>. (Requires Z_MIN_PROBE_REPEATABILITY_TEST)
* M75 - Start the print job timer.
* M76 - Pause the print job timer.
* M77 - Stop the print job timer.
* M78 - Show statistical information about the print jobs. (Requires PRINTCOUNTER)
2017-05-11 09:32:08 +02:00
* M80 - Turn on Power Supply. (Requires POWER_SUPPLY > 0)
* M81 - Turn off Power Supply. (Requires POWER_SUPPLY > 0)
* M82 - Set E codes absolute (default).
* M83 - Set E codes relative while in Absolute (G90) mode.
* M84 - Disable steppers until next move, or use S<seconds> to specify an idle
* duration after which steppers should turn off. S0 disables the timeout.
2015-04-14 02:17:36 +02:00
* M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
* M92 - Set planner.axis_steps_per_mm for one or more axes.
* M100 - Watch Free Memory (for debugging) (Requires M100_FREE_MEMORY_WATCHER)
* M104 - Set extruder target temp.
* M105 - Report current temperatures.
2017-10-07 16:29:22 +02:00
* M106 - Set print fan speed.
* M107 - Print fan off.
* M108 - Break out of heating loops (M109, M190, M303). With no controller, breaks out of M0/M1. (Requires EMERGENCY_PARSER)
2015-04-14 02:17:36 +02:00
* M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
* Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
2016-11-30 02:51:13 +01:00
* If AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
* M110 - Set the current line number. (Used by host printing)
* M111 - Set debug flags: "M111 S<flagbits>". See flag bits defined in enum.h.
* M112 - Emergency stop.
* M113 - Get or set the timeout interval for Host Keepalive "busy" messages. (Requires HOST_KEEPALIVE_FEATURE)
* M114 - Report current position.
2018-09-09 04:17:02 +02:00
* - S1 Compute length traveled since last G96 using encoder position data (Requires MECHADUINO_I2C_COMMANDS, only kinematic axes)
2016-11-09 01:05:59 +01:00
* M115 - Report capabilities. (Extended capabilities requires EXTENDED_CAPABILITIES_REPORT)
* M117 - Display a message on the controller screen. (Requires an LCD)
* M118 - Display a message in the host console.
* M119 - Report endstops status.
* M120 - Enable endstops detection.
* M121 - Disable endstops detection.
2018-07-25 02:50:49 +02:00
* M122 - Debug stepper (Requires at least one _DRIVER_TYPE defined as TMC2130/TMC2208/TMC2660)
2017-03-19 10:26:22 +01:00
* M125 - Save current position and move to filament change position. (Requires PARK_HEAD_ON_PAUSE)
* M126 - Solenoid Air Valve Open. (Requires BARICUDA)
* M127 - Solenoid Air Valve Closed. (Requires BARICUDA)
* M128 - EtoP Open. (Requires BARICUDA)
* M129 - EtoP Closed. (Requires BARICUDA)
* M140 - Set bed target temp. S<temp>
* M145 - Set heatup values for materials on the LCD. H<hotend> B<bed> F<fan speed> for S<material> (0=PLA, 1=ABS)
* M149 - Set temperature units. (Requires TEMPERATURE_UNITS_SUPPORT)
* M150 - Set Status LED Color as R<red> U<green> B<blue> P<bright>. Values 0-255. (Requires BLINKM, RGB_LED, RGBW_LED, NEOPIXEL_LED, or PCA9632).
* M155 - Auto-report temperatures with interval of S<seconds>. (Requires AUTO_REPORT_TEMPERATURES)
* M163 - Set a single proportion for a mixing extruder. (Requires MIXING_EXTRUDER)
* M164 - Commit the mix (Req. MIXING_EXTRUDER) and optionally save as a virtual tool (Req. MIXING_VIRTUAL_TOOLS > 1)
* M165 - Set the mix for a mixing extruder wuth parameters ABCDHI. (Requires MIXING_EXTRUDER and DIRECT_MIXING_IN_G1)
* M190 - Sxxx Wait for bed current temp to reach target temp. ** Waits only when heating! **
* Rxxx Wait for bed current temp to reach target temp. ** Waits for heating or cooling. **
* M200 - Set filament diameter, D<diameter>, setting E axis units to cubic. (Use S0 to revert to linear units.)
* M201 - Set max acceleration in units/s^2 for print moves: "M201 X<accel> Y<accel> Z<accel> E<accel>"
* M202 - Set max acceleration in units/s^2 for travel moves: "M202 X<accel> Y<accel> Z<accel> E<accel>" ** UNUSED IN MARLIN! **
* M203 - Set maximum feedrate: "M203 X<fr> Y<fr> Z<fr> E<fr>" in units/sec.
* M204 - Set default acceleration in units/sec^2: P<printing> R<extruder_only> T<travel>
* M205 - Set advanced settings. Current units apply:
S<print> T<travel> minimum speeds
2018-09-09 04:17:02 +02:00
Q<minimum segment time>
2016-10-03 08:54:15 +02:00
X<max X jerk>, Y<max Y jerk>, Z<max Z jerk>, E<max E jerk>
* M206 - Set additional homing offset. (Disabled by NO_WORKSPACE_OFFSETS or DELTA)
* M207 - Set Retract Length: S<length>, Feedrate: F<units/min>, and Z lift: Z<distance>. (Requires FWRETRACT)
* M208 - Set Recover (unretract) Additional (!) Length: S<length> and Feedrate: F<units/min>. (Requires FWRETRACT)
* M209 - Turn Automatic Retract Detection on/off: S<0|1> (For slicers that don't support G10/11). (Requires FWRETRACT)
Every normal extrude-only move will be classified as retract depending on the direction.
2017-03-19 10:26:22 +01:00
* M211 - Enable, Disable, and/or Report software endstops: S<0|1> (Requires MIN_SOFTWARE_ENDSTOPS or MAX_SOFTWARE_ENDSTOPS)
2018-03-12 04:21:17 +01:00
* M218 - Set/get a tool offset: "M218 T<index> X<offset> Y<offset>". (Requires 2 or more extruders)
* M220 - Set Feedrate Percentage: "M220 S<percent>" (i.e., "FR" on the LCD)
* M221 - Set Flow Percentage: "M221 S<percent>"
* M226 - Wait until a pin is in a given state: "M226 P<pin> S<state>"
* M240 - Trigger a camera to take a photograph. (Requires CHDK or PHOTOGRAPH_PIN)
* M250 - Set LCD contrast: "M250 C<contrast>" (0-63). (Requires LCD support)
2016-11-08 23:28:42 +01:00
* M260 - i2c Send Data (Requires EXPERIMENTAL_I2CBUS)
* M261 - i2c Request Data (Requires EXPERIMENTAL_I2CBUS)
* M280 - Set servo position absolute: "M280 P<index> S<angle|µs>". (Requires servos)
* M290 - Babystepping (Requires BABYSTEPPING)
2015-04-14 02:17:36 +02:00
* M300 - Play beep sound S<frequency Hz> P<duration ms>
* M301 - Set PID parameters P I and D. (Requires PIDTEMP)
* M302 - Allow cold extrudes, or set the minimum extrude S<temperature>. (Requires PREVENT_COLD_EXTRUSION)
* M303 - PID relay autotune S<temperature> sets the target temperature. Default 150C. (Requires PIDTEMP)
* M304 - Set bed PID parameters P I and D. (Requires PIDTEMPBED)
2017-05-13 07:43:12 +02:00
* M350 - Set microstepping mode. (Requires digital microstepping pins.)
* M351 - Toggle MS1 MS2 pins directly. (Requires digital microstepping pins.)
* M355 - Set Case Light on/off and set brightness. (Requires CASE_LIGHT_PIN)
* M380 - Activate solenoid on active extruder. (Requires EXT_SOLENOID)
* M381 - Disable all solenoids. (Requires EXT_SOLENOID)
* M400 - Finish all moves.
2018-03-02 02:06:54 +01:00
* M401 - Deploy and activate Z probe. (Requires a probe)
* M402 - Deactivate and stow Z probe. (Requires a probe)
* M404 - Display or set the Nominal Filament Width: "W<diameter>". (Requires FILAMENT_WIDTH_SENSOR)
* M405 - Enable Filament Sensor flow control. "M405 D<delay_cm>". (Requires FILAMENT_WIDTH_SENSOR)
* M406 - Disable Filament Sensor flow control. (Requires FILAMENT_WIDTH_SENSOR)
* M407 - Display measured filament diameter in millimeters. (Requires FILAMENT_WIDTH_SENSOR)
* M410 - Quickstop. Abort all planned moves.
2016-09-29 08:03:28 +02:00
* M420 - Enable/Disable Leveling (with current values) S1=enable S0=disable (Requires MESH_BED_LEVELING or ABL)
2018-04-28 18:15:03 +02:00
* M421 - Set a single Z coordinate in the Mesh Leveling grid. X<units> Y<units> Z<units> (Requires MESH_BED_LEVELING, AUTO_BED_LEVELING_BILINEAR, or AUTO_BED_LEVELING_UBL)
* M428 - Set the home_offset based on the current_position. Nearest edge applies. (Disabled by NO_WORKSPACE_OFFSETS or DELTA)
* M500 - Store parameters in EEPROM. (Requires EEPROM_SETTINGS)
* M501 - Restore parameters from EEPROM. (Requires EEPROM_SETTINGS)
* M502 - Revert to the default "factory settings". ** Does not write them to EEPROM! **
* M503 - Print the current settings (in memory): "M503 S<verbose>". S0 specifies compact output.
* M540 - Enable/disable SD card abort on endstop hit: "M540 S<state>". (Requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
* M600 - Pause for filament change: "M600 X<pos> Y<pos> Z<raise> E<first_retract> L<later_retract>". (Requires ADVANCED_PAUSE_FEATURE)
2017-12-27 05:51:55 +01:00
* M603 - Configure filament change: "M603 T<tool> U<unload_length> L<load_length>". (Requires ADVANCED_PAUSE_FEATURE)
2018-03-10 12:33:08 +01:00
* M605 - Set Dual X-Carriage movement mode: "M605 S<mode> [X<x_offset>] [R<temp_offset>]". (Requires DUAL_X_CARRIAGE)
2018-09-09 04:17:02 +02:00
* M665 - Set Delta configurations: "M665 H<delta height> L<diagonal rod> R<delta radius> S<segments/s> B<calibration radius> X<Alpha angle trim> Y<Beta angle trim> Z<Gamma angle trim> (Requires DELTA)
* M665 - Set Hangprinter configurations: "M665 W<Ay> E<Az> R<Bx> T<By> Y<Bz> U<Cx> I<Cy> O<Cz> P<Dz> S<segments/s>" (Requires HANGPRINTER)
* M666 - Set/get endstop offsets for delta (Requires DELTA) or dual endstops (Requires [XYZ]_DUAL_ENDSTOPS).
2017-12-27 05:51:55 +01:00
* M701 - Load filament (requires FILAMENT_LOAD_UNLOAD_GCODES)
* M702 - Unload filament (requires FILAMENT_LOAD_UNLOAD_GCODES)
* M851 - Set Z probe's Z offset in current units. (Negative = below the nozzle.)
2017-11-05 01:21:41 +01:00
* M852 - Set skew factors: "M852 [I<xy>] [J<xz>] [K<yz>]". (Requires SKEW_CORRECTION_GCODE, and SKEW_CORRECTION_FOR_Z for IJ)
* M860 - Report the position of position encoder modules.
* M861 - Report the status of position encoder modules.
* M862 - Perform an axis continuity test for position encoder modules.
* M863 - Perform steps-per-mm calibration for position encoder modules.
* M864 - Change position encoder module I2C address.
* M865 - Check position encoder module firmware version.
* M866 - Report or reset position encoder module error count.
* M867 - Enable/disable or toggle error correction for position encoder modules.
* M868 - Report or set position encoder module error correction threshold.
* M869 - Report position encoder module error.
2018-03-01 22:23:28 +01:00
* M900 - Get or Set Linear Advance K-factor. (Requires LIN_ADVANCE)
2018-07-25 02:50:49 +02:00
* M906 - Set or get motor current in milliamps using axis codes X, Y, Z, E. Report values if no axis codes given. (Requires at least one _DRIVER_TYPE defined as TMC2130/TMC2208/TMC2660)
* M907 - Set digital trimpot motor current using axis codes. (Requires a board with digital trimpots)
* M908 - Control digital trimpot directly. (Requires DAC_STEPPER_CURRENT or DIGIPOTSS_PIN)
* M909 - Print digipot/DAC current value. (Requires DAC_STEPPER_CURRENT)
* M910 - Commit digipot/DAC value to external EEPROM via I2C. (Requires DAC_STEPPER_CURRENT)
2018-07-25 02:50:49 +02:00
* M911 - Report stepper driver overtemperature pre-warn condition. (Requires at least one _DRIVER_TYPE defined as TMC2130/TMC2208/TMC2660)
* M912 - Clear stepper driver overtemperature pre-warn condition flag. (Requires at least one _DRIVER_TYPE defined as TMC2130/TMC2208/TMC2660)
2017-04-15 05:44:08 +02:00
* M913 - Set HYBRID_THRESHOLD speed. (Requires HYBRID_THRESHOLD)
* M914 - Set SENSORLESS_HOMING sensitivity. (Requires SENSORLESS_HOMING)
2015-04-14 02:17:36 +02:00
*
* M360 - SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
* M361 - SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
* M362 - SCARA calibration: Move to cal-position PsiA (0 deg calibration)
* M363 - SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
* M364 - SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
*
2015-05-19 13:25:15 +02:00
* ************ Custom codes - This can change to suit future G-code regulations
* M928 - Start SD logging: "M928 filename.gco". Stop with M29. (Requires SDSUPPORT)
2015-04-14 02:17:36 +02:00
* M999 - Restart after being stopped by error
*
* "T" Codes
*
* T0-T3 - Select an extruder (tool) by index: "T<n> F<units/min>"
*
2015-04-14 02:17:36 +02:00
*/
2016-11-19 04:54:38 +01:00
#include "Marlin.h"
#include "ultralcd.h"
#include "planner.h"
#include "stepper.h"
#include "endstops.h"
#include "temperature.h"
#include "cardreader.h"
#include "configuration_store.h"
#include "language.h"
#include "pins_arduino.h"
#include "math.h"
#include "nozzle.h"
#include "printcounter.h"
2016-11-19 04:54:38 +01:00
#include "duration_t.h"
#include "types.h"
#include "parser.h"
2016-11-19 04:54:38 +01:00
#if ENABLED(AUTO_POWER_CONTROL)
#include "power.h"
#endif
2018-05-01 11:20:45 +02:00
#if ABL_PLANAR
2016-11-19 04:54:38 +01:00
#include "vector_3.h"
#if ENABLED(AUTO_BED_LEVELING_LINEAR)
#include "least_squares_fit.h"
2016-11-19 04:54:38 +01:00
#endif
#elif ENABLED(MESH_BED_LEVELING)
#include "mesh_bed_leveling.h"
#endif
#if ENABLED(BEZIER_CURVE_SUPPORT)
#include "planner_bezier.h"
#endif
2018-01-04 23:42:56 +01:00
#if ENABLED(FWRETRACT)
#include "fwretract.h"
#endif
2018-04-21 23:12:04 +02:00
#if ENABLED(POWER_LOSS_RECOVERY)
#include "power_loss_recovery.h"
#endif
#if ENABLED(FILAMENT_RUNOUT_SENSOR)
#include "runout.h"
#endif
2016-11-19 04:54:38 +01:00
#if HAS_BUZZER && DISABLED(LCD_USE_I2C_BUZZER)
#include "buzzer.h"
#endif
#if ENABLED(USE_WATCHDOG)
#include "watchdog.h"
#endif
#if ENABLED(MAX7219_DEBUG)
#include "Max7219_Debug_LEDs.h"
#endif
2017-11-28 06:02:44 +01:00
#if HAS_COLOR_LEDS
#include "leds.h"
#endif
2016-11-19 04:54:38 +01:00
#if HAS_SERVOS
#include "servo.h"
#endif
#if HAS_DIGIPOTSS
#include <SPI.h>
#endif
2018-01-10 02:05:37 +01:00
#if HAS_TRINAMIC
#include "tmc_util.h"
#endif
2016-11-19 04:54:38 +01:00
#if ENABLED(DAC_STEPPER_CURRENT)
#include "stepper_dac.h"
#endif
#if ENABLED(EXPERIMENTAL_I2CBUS)
#include "twibus.h"
#endif
#if ENABLED(I2C_POSITION_ENCODERS)
#include "I2CPositionEncoder.h"
#endif
#if ENABLED(M100_FREE_MEMORY_WATCHER)
2015-07-19 01:59:12 +02:00
void gcode_M100();
void M100_dump_routine(const char * const title, const char *start, const char *end);
2015-07-06 02:42:13 +02:00
#endif
#if ENABLED(G26_MESH_VALIDATION)
bool g26_debug_flag; // =false
void gcode_G26();
#endif
#if ENABLED(SDSUPPORT)
CardReader card;
#endif
#if ENABLED(EXPERIMENTAL_I2CBUS)
TWIBus i2c;
#endif
2016-09-29 22:06:01 +02:00
#if ENABLED(G38_PROBE_TARGET)
2016-09-26 08:30:34 +02:00
bool G38_move = false,
G38_endstop_hit = false;
#endif
2017-03-18 16:15:54 +01:00
#if ENABLED(AUTO_BED_LEVELING_UBL)
#include "ubl.h"
2017-03-18 16:15:54 +01:00
#endif
2017-11-01 19:08:46 +01:00
#if ENABLED(CNC_COORDINATE_SYSTEMS)
int8_t active_coordinate_system = -1; // machine space
float coordinate_system[MAX_COORDINATE_SYSTEMS][XYZ];
#endif
2015-04-08 09:56:19 +02:00
bool Running = true;
uint8_t marlin_debug_flags = DEBUG_NONE;
2016-10-05 04:32:37 +02:00
/**
* Cartesian Current Position
2017-11-03 02:17:51 +01:00
* Used to track the native machine position as moves are queued.
2017-11-09 04:28:11 +01:00
* Used by 'buffer_line_to_current_position' to do a move after changing it.
2016-10-05 04:32:37 +02:00
* Used by 'SYNC_PLAN_POSITION_KINEMATIC' to update 'planner.position'.
*/
float current_position[XYZE] = { 0 };
2016-10-05 04:32:37 +02:00
/**
* Cartesian Destination
2017-11-09 04:28:11 +01:00
* The destination for a move, filled in by G-code movement commands,
* and expected by functions like 'prepare_move_to_destination'.
* Set with 'gcode_get_destination' or 'set_destination_from_current'.
2016-10-05 04:32:37 +02:00
*/
float destination[XYZE] = { 0 };
2016-10-05 04:32:37 +02:00
/**
* axis_homed
* Flags that each linear axis was homed.
* XYZ on cartesian, ABC on delta, ABZ on SCARA.
*
* axis_known_position
* Flags that the position is known in each linear axis. Set when homed.
* Cleared whenever a stepper powers off, potentially losing its position.
*/
2018-06-12 04:42:39 +02:00
uint8_t axis_homed, axis_known_position; // = 0
2015-04-08 09:56:19 +02:00
2016-10-05 04:32:37 +02:00
/**
* GCode line number handling. Hosts may opt to include line numbers when
* sending commands to Marlin, and lines will be checked for sequentiality.
* M110 N<int> sets the current line number.
2016-10-05 04:32:37 +02:00
*/
2015-04-08 09:56:19 +02:00
static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
2015-04-14 02:17:36 +02:00
2016-10-05 04:32:37 +02:00
/**
* GCode Command Queue
* A simple ring buffer of BUFSIZE command strings.
*
* Commands are copied into this buffer by the command injectors
* (immediate, serial, sd card) and they are processed sequentially by
* the main loop. The process_next_command function parses the next
* command and hands off execution to individual handler functions.
*/
2018-04-21 23:12:04 +02:00
uint8_t commands_in_queue = 0, // Count of commands in the queue
cmd_queue_index_r = 0, // Ring buffer read (out) position
cmd_queue_index_w = 0; // Ring buffer write (in) position
char command_queue[BUFSIZE][MAX_CMD_SIZE];
2016-10-05 04:32:37 +02:00
/**
* Next Injected Command pointer. NULL if no commands are being injected.
* Used by Marlin internally to ensure that commands initiated from within
* are enqueued ahead of any pending serial or sd card commands.
*/
static const char *injected_commands_P = NULL;
2015-04-08 09:56:19 +02:00
#if ENABLED(TEMPERATURE_UNITS_SUPPORT)
TempUnit input_temp_units = TEMPUNIT_C;
#endif
2016-07-16 03:49:34 +02:00
/**
* Feed rates are often configured with mm/m
* but the planner and stepper like mm/s units.
*/
static const float homing_feedrate_mm_s[] PROGMEM = {
2018-09-09 04:17:02 +02:00
#if ENABLED(HANGPRINTER)
MMM_TO_MMS(DUMMY_HOMING_FEEDRATE), MMM_TO_MMS(DUMMY_HOMING_FEEDRATE),
MMM_TO_MMS(DUMMY_HOMING_FEEDRATE), MMM_TO_MMS(DUMMY_HOMING_FEEDRATE), 0
2016-07-20 02:11:57 +02:00
#else
2018-09-09 04:17:02 +02:00
#if ENABLED(DELTA)
MMM_TO_MMS(HOMING_FEEDRATE_Z), MMM_TO_MMS(HOMING_FEEDRATE_Z),
#else
MMM_TO_MMS(HOMING_FEEDRATE_XY), MMM_TO_MMS(HOMING_FEEDRATE_XY),
#endif
MMM_TO_MMS(HOMING_FEEDRATE_Z), 0
2016-07-20 02:11:57 +02:00
#endif
};
FORCE_INLINE float homing_feedrate(const AxisEnum a) { return pgm_read_float(&homing_feedrate_mm_s[a]); }
float feedrate_mm_s = MMM_TO_MMS(1500.0f);
2017-05-20 10:03:08 +02:00
static float saved_feedrate_mm_s;
2017-11-10 09:38:53 +01:00
int16_t feedrate_percentage = 100, saved_feedrate_percentage;
// Initialized by settings.load()
2018-06-12 04:42:39 +02:00
bool axis_relative_modes[XYZE] = AXIS_RELATIVE_MODES;
#if HAS_WORKSPACE_OFFSET
#if HAS_POSITION_SHIFT
// The distance that XYZ has been offset by G92. Reset by G28.
float position_shift[XYZ] = { 0 };
#endif
#if HAS_HOME_OFFSET
// This offset is added to the configured home position.
// Set by M206, M428, or menu item. Saved to EEPROM.
float home_offset[XYZ] = { 0 };
#endif
#if HAS_HOME_OFFSET && HAS_POSITION_SHIFT
// The above two are combined to save on computes
float workspace_offset[XYZ] = { 0 };
#endif
2017-03-05 01:01:33 +01:00
#endif
// Software Endstops are based on the configured limits.
2017-10-30 20:13:13 +01:00
float soft_endstop_min[XYZ] = { X_MIN_BED, Y_MIN_BED, Z_MIN_POS },
soft_endstop_max[XYZ] = { X_MAX_BED, Y_MAX_BED, Z_MAX_POS };
2017-03-16 23:20:24 +01:00
#if HAS_SOFTWARE_ENDSTOPS
bool soft_endstops_enabled = true;
2017-10-30 20:13:13 +01:00
#if IS_KINEMATIC
float soft_endstop_radius, soft_endstop_radius_2;
#endif
#endif
2015-04-08 09:56:19 +02:00
2016-03-06 03:27:45 +01:00
#if FAN_COUNT > 0
int16_t fanSpeeds[FAN_COUNT] = { 0 };
2017-10-07 16:29:22 +02:00
#if ENABLED(EXTRA_FAN_SPEED)
int16_t old_fanSpeeds[FAN_COUNT],
new_fanSpeeds[FAN_COUNT];
#endif
#if ENABLED(PROBING_FANS_OFF)
2018-03-21 08:43:10 +01:00
bool fans_paused; // = false;
int16_t paused_fanSpeeds[FAN_COUNT] = { 0 };
#endif
2016-03-06 03:27:45 +01:00
#endif
#if ENABLED(USE_CONTROLLER_FAN)
2018-03-21 08:43:10 +01:00
int controllerFanSpeed; // = 0;
#endif
2016-04-18 08:13:07 +02:00
// The active extruder (tool). Set with T<extruder> command.
2018-03-21 08:43:10 +01:00
uint8_t active_extruder; // = 0;
2016-04-18 08:13:07 +02:00
// Relative Mode. Enable with G91, disable with G90.
2018-03-21 08:43:10 +01:00
static bool relative_mode; // = false;
2016-04-18 08:13:07 +02:00
2016-10-07 05:06:33 +02:00
// For M109 and M190, this flag may be cleared (by M108) to exit the wait loop
2016-07-07 04:59:19 +02:00
volatile bool wait_for_heatup = true;
2015-04-08 09:56:19 +02:00
2016-10-07 05:06:33 +02:00
// For M0/M1, this flag may be cleared (by M108) to exit the wait-for-user loop
#if HAS_RESUME_CONTINUE
2018-03-21 08:43:10 +01:00
volatile bool wait_for_user; // = false;
2016-09-12 03:51:53 +02:00
#endif
#if HAS_AUTO_REPORTING || ENABLED(HOST_KEEPALIVE_FEATURE)
bool suspend_auto_report; // = false
2016-09-12 03:51:53 +02:00
#endif
2017-06-06 00:41:38 +02:00
const char axis_codes[XYZE] = { 'X', 'Y', 'Z', 'E' };
2015-04-08 09:56:19 +02:00
2018-09-09 04:17:02 +02:00
#if ENABLED(HANGPRINTER)
const char axis_codes_hangprinter[ABCDE] = { 'A', 'B', 'C', 'D', 'E' };
#define RAW_AXIS_CODES(I) axis_codes_hangprinter[I]
#else
#define RAW_AXIS_CODES(I) axis_codes[I]
#endif
2016-10-07 05:06:33 +02:00
// Number of characters read in the current line of serial input
2018-03-21 08:43:10 +01:00
static int serial_count; // = 0;
2016-04-18 08:13:07 +02:00
2015-04-04 00:45:41 +02:00
// Inactivity shutdown
millis_t previous_move_ms; // = 0;
2018-03-21 08:43:10 +01:00
static millis_t max_inactive_time; // = 0;
2016-04-11 00:55:12 +02:00
static millis_t stepper_inactive_time = (DEFAULT_STEPPER_DEACTIVE_TIME) * 1000UL;
2016-04-18 08:13:07 +02:00
2016-08-02 06:10:53 +02:00
// Buzzer - I2C on the LCD or a BEEPER_PIN
#if ENABLED(LCD_USE_I2C_BUZZER)
#define BUZZ(d,f) lcd_buzz(d, f)
2016-10-05 04:31:50 +02:00
#elif PIN_EXISTS(BEEPER)
2016-08-02 06:10:53 +02:00
Buzzer buzzer;
#define BUZZ(d,f) buzzer.tone(d, f)
#else
#define BUZZ(d,f) NOOP
2016-06-04 21:29:01 +02:00
#endif
uint8_t target_extruder;
2015-04-04 00:45:41 +02:00
2016-06-15 03:05:20 +02:00
#if HAS_BED_PROBE
float zprobe_zoffset; // Initialized by settings.load()
2016-06-15 03:05:20 +02:00
#endif
#if HAS_ABL
float xy_probe_feedrate_mm_s = MMM_TO_MMS(XY_PROBE_SPEED);
#define XY_PROBE_FEEDRATE_MM_S xy_probe_feedrate_mm_s
#elif defined(XY_PROBE_SPEED)
#define XY_PROBE_FEEDRATE_MM_S MMM_TO_MMS(XY_PROBE_SPEED)
2016-06-22 11:22:43 +02:00
#else
#define XY_PROBE_FEEDRATE_MM_S PLANNER_XY_FEEDRATE()
2015-04-04 00:45:41 +02:00
#endif
#if ENABLED(AUTO_BED_LEVELING_BILINEAR)
2016-10-11 00:05:11 +02:00
#if ENABLED(DELTA)
#define ADJUST_DELTA(V) \
if (planner.leveling_active) { \
2016-10-11 00:05:11 +02:00
const float zadj = bilinear_z_offset(V); \
delta[A_AXIS] += zadj; \
delta[B_AXIS] += zadj; \
delta[C_AXIS] += zadj; \
}
#else
#define ADJUST_DELTA(V) if (planner.leveling_active) { delta[Z_AXIS] += bilinear_z_offset(V); }
2016-10-11 00:05:11 +02:00
#endif
#elif IS_KINEMATIC
#define ADJUST_DELTA(V) NOOP
#endif
#if HAS_HEATED_BED && ENABLED(WAIT_FOR_BED_HEATER)
const static char msg_wait_for_bed_heating[] PROGMEM = "Wait for bed heating...\n";
2015-04-04 00:45:41 +02:00
#endif
// Extruder offsets
2016-05-27 02:43:20 +02:00
#if HOTENDS > 1
float hotend_offset[XYZ][HOTENDS]; // Initialized by settings.load()
#endif
2018-04-02 06:51:12 +02:00
#if HAS_Z_SERVO_PROBE
2016-06-14 05:18:24 +02:00
const int z_servo_angle[2] = Z_SERVO_ANGLES;
#endif
#if ENABLED(BARICUDA)
uint8_t baricuda_valve_pressure = 0,
baricuda_e_to_p_pressure = 0;
#endif
#if HAS_POWER_SWITCH
bool powersupply_on = (
#if ENABLED(PS_DEFAULT_OFF)
false
#else
true
#endif
);
#if ENABLED(AUTO_POWER_CONTROL)
#define PSU_ON() powerManager.power_on()
#define PSU_OFF() powerManager.power_off()
#else
#define PSU_ON() PSU_PIN_ON()
#define PSU_OFF() PSU_PIN_OFF()
#endif
#endif
#if ENABLED(DELTA)
float delta[ABC];
// Initialized by settings.load()
float delta_height,
delta_endstop_adj[ABC] = { 0 },
delta_radius,
delta_tower_angle_trim[ABC],
2017-03-08 00:42:04 +01:00
delta_tower[ABC][2],
delta_diagonal_rod,
delta_calibration_radius,
2017-03-08 00:42:04 +01:00
delta_diagonal_rod_2_tower[ABC],
delta_segments_per_second,
delta_clip_start_height = Z_MAX_POS;
float delta_safe_distance_from_top();
2018-09-09 04:17:02 +02:00
#elif ENABLED(HANGPRINTER)
float anchor_A_y,
anchor_A_z,
anchor_B_x,
anchor_B_y,
anchor_B_z,
anchor_C_x,
anchor_C_y,
anchor_C_z,
anchor_D_z,
line_lengths[ABCD],
line_lengths_origin[ABCD],
delta_segments_per_second;
2015-04-04 00:45:41 +02:00
#endif
#if ENABLED(AUTO_BED_LEVELING_BILINEAR)
2016-12-10 08:54:09 +01:00
int bilinear_grid_spacing[2], bilinear_start[2];
float bilinear_grid_factor[2],
z_values[GRID_MAX_POINTS_X][GRID_MAX_POINTS_Y];
2018-01-23 18:32:53 +01:00
#if ENABLED(ABL_BILINEAR_SUBDIVISION)
#define ABL_BG_SPACING(A) bilinear_grid_spacing_virt[A]
#define ABL_BG_FACTOR(A) bilinear_grid_factor_virt[A]
#define ABL_BG_POINTS_X ABL_GRID_POINTS_VIRT_X
#define ABL_BG_POINTS_Y ABL_GRID_POINTS_VIRT_Y
#define ABL_BG_GRID(X,Y) z_values_virt[X][Y]
#else
#define ABL_BG_SPACING(A) bilinear_grid_spacing[A]
#define ABL_BG_FACTOR(A) bilinear_grid_factor[A]
#define ABL_BG_POINTS_X GRID_MAX_POINTS_X
#define ABL_BG_POINTS_Y GRID_MAX_POINTS_Y
#define ABL_BG_GRID(X,Y) z_values[X][Y]
#endif
#endif
#if IS_SCARA
// Float constants for SCARA calculations
const float L1 = SCARA_LINKAGE_1, L2 = SCARA_LINKAGE_2,
L1_2 = sq(float(L1)), L1_2_2 = 2.0 * L1_2,
L2_2 = sq(float(L2));
float delta_segments_per_second = SCARA_SEGMENTS_PER_SECOND,
2016-09-16 21:31:53 +02:00
delta[ABC];
2015-04-04 01:46:56 +02:00
#endif
2016-09-12 10:48:29 +02:00
float cartes[XYZ] = { 0 };
#if ENABLED(FILAMENT_WIDTH_SENSOR)
2018-03-21 08:43:10 +01:00
bool filament_sensor; // = false; // M405 turns on filament sensor control. M406 turns it off.
2017-04-26 09:43:11 +02:00
float filament_width_nominal = DEFAULT_NOMINAL_FILAMENT_DIA, // Nominal filament width. Change with M404.
2016-09-06 06:57:12 +02:00
filament_width_meas = DEFAULT_MEASURED_FILAMENT_DIA; // Measured filament diameter
2017-12-20 07:13:49 +01:00
uint8_t meas_delay_cm = MEASUREMENT_DELAY_CM; // Distance delay setting
int8_t measurement_delay[MAX_MEASUREMENT_DELAY + 1], // Ring buffer to delayed measurement. Store extruder factor after subtracting 100
filwidth_delay_index[2] = { 0, -1 }; // Indexes into ring buffer
#endif
#if ENABLED(ADVANCED_PAUSE_FEATURE)
AdvancedPauseMenuResponse advanced_pause_menu_response;
2017-12-27 05:51:55 +01:00
float filament_change_unload_length[EXTRUDERS],
filament_change_load_length[EXTRUDERS];
#endif
#if ENABLED(MIXING_EXTRUDER)
float mixing_factor[MIXING_STEPPERS]; // Reciprocal of mix proportion. 0.0 = off, otherwise >= 1.0.
#if MIXING_VIRTUAL_TOOLS > 1
float mixing_virtual_tool_mix[MIXING_VIRTUAL_TOOLS][MIXING_STEPPERS];
#endif
#endif
2016-02-21 02:35:35 +01:00
static bool send_ok[BUFSIZE];
#if HAS_SERVOS
Servo servo[NUM_SERVOS];
2016-06-13 00:35:01 +02:00
#define MOVE_SERVO(I, P) servo[I].move(P)
2018-04-02 06:51:12 +02:00
#if HAS_Z_SERVO_PROBE
#define DEPLOY_Z_SERVO() MOVE_SERVO(Z_PROBE_SERVO_NR, z_servo_angle[0])
#define STOW_Z_SERVO() MOVE_SERVO(Z_PROBE_SERVO_NR, z_servo_angle[1])
2016-06-22 23:04:23 +02:00
#endif
#endif
#ifdef CHDK
2016-04-11 00:55:12 +02:00
millis_t chdkHigh = 0;
bool chdkActive = false;
#endif
#if ENABLED(HOST_KEEPALIVE_FEATURE)
MarlinBusyState busy_state = NOT_BUSY;
2016-04-11 00:55:12 +02:00
static millis_t next_busy_signal_ms = 0;
uint8_t host_keepalive_interval = DEFAULT_KEEPALIVE_INTERVAL;
#else
2017-03-29 02:45:54 +02:00
#define host_keepalive() NOOP
#endif
#if ENABLED(I2C_POSITION_ENCODERS)
I2CPositionEncodersMgr I2CPEM;
#endif
#if ENABLED(CNC_WORKSPACE_PLANES)
static WorkspacePlane workspace_plane = PLANE_XY;
#endif
FORCE_INLINE float pgm_read_any(const float *p) { return pgm_read_float_near(p); }
FORCE_INLINE signed char pgm_read_any(const signed char *p) { return pgm_read_byte_near(p); }
2016-09-06 02:56:03 +02:00
#define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
static const PROGMEM type array##_P[XYZ] = { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
2017-12-09 13:43:38 +01:00
static inline type array(const AxisEnum axis) { return pgm_read_any(&array##_P[axis]); } \
2017-04-24 20:16:54 +02:00
typedef void __void_##CONFIG##__
2016-09-06 02:56:03 +02:00
2017-04-24 20:16:54 +02:00
XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
XYZ_CONSTS_FROM_CONFIG(float, home_bump_mm, HOME_BUMP_MM);
XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
2016-09-06 02:56:03 +02:00
2016-03-27 05:36:36 +02:00
/**
* ***************************************************************************
* ******************************** FUNCTIONS ********************************
* ***************************************************************************
*/
2016-04-18 09:05:22 +02:00
void stop();
void get_available_commands();
void process_next_command();
2017-11-01 19:08:46 +01:00
void process_parsed_command();
2016-09-12 10:48:29 +02:00
void get_cartesian_from_steppers();
void set_current_from_steppers_for_axis(const AxisEnum axis);
#if ENABLED(ARC_SUPPORT)
2017-12-09 12:11:22 +01:00
void plan_arc(const float (&cart)[XYZE], const float (&offset)[2], const bool clockwise);
#endif
#if ENABLED(BEZIER_CURVE_SUPPORT)
void plan_cubic_move(const float (&cart)[XYZE], const float (&offset)[4]);
#endif
void report_current_position();
void report_current_position_detail();
#if ENABLED(DEBUG_LEVELING_FEATURE)
void print_xyz(const char* prefix, const char* suffix, const float x, const float y, const float z) {
serialprintPGM(prefix);
2017-04-24 20:16:54 +02:00
SERIAL_CHAR('(');
SERIAL_ECHO(x);
SERIAL_ECHOPAIR(", ", y);
SERIAL_ECHOPAIR(", ", z);
2017-03-18 16:17:00 +01:00
SERIAL_CHAR(')');
2017-06-09 01:08:30 +02:00
if (suffix) serialprintPGM(suffix); else SERIAL_EOL();
}
void print_xyz(const char* prefix, const char* suffix, const float xyz[]) {
print_xyz(prefix, suffix, xyz[X_AXIS], xyz[Y_AXIS], xyz[Z_AXIS]);
}
#define DEBUG_POS(SUFFIX,VAR) do { \
2017-06-15 22:17:41 +02:00
print_xyz(PSTR(" " STRINGIFY(VAR) "="), PSTR(" : " SUFFIX "\n"), VAR); }while(0)
#endif
/**
* sync_plan_position
2016-09-15 07:38:02 +02:00
*
* Set the planner/stepper positions directly from current_position with
* no kinematic translation. Used for homing axes and cartesian/core syncing.
2018-09-09 04:17:02 +02:00
*
* This is not possible for Hangprinter because current_position and position are different sizes
*/
void sync_plan_position() {
2018-09-09 04:17:02 +02:00
#if DISABLED(HANGPRINTER)
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) DEBUG_POS("sync_plan_position", current_position);
#endif
planner.set_position_mm(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_CART]);
#endif
}
2018-09-09 04:17:02 +02:00
void sync_plan_position_e() { planner.set_e_position_mm(current_position[E_CART]); }
#if IS_KINEMATIC
inline void sync_plan_position_kinematic() {
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) DEBUG_POS("sync_plan_position_kinematic", current_position);
#endif
planner.set_position_mm_kinematic(current_position);
}
#endif
#if ENABLED(SDSUPPORT)
#include "SdFatUtil.h"
int freeMemory() { return SdFatUtil::FreeRam(); }
#else
extern "C" {
extern char __bss_end;
extern char __heap_start;
extern void* __brkval;
int freeMemory() {
int free_memory;
if (int(__brkval) == 0)
free_memory = (int(&free_memory)) - (int(&__bss_end));
else
free_memory = (int(&free_memory)) - (int(__brkval));
return free_memory;
}
}
2017-05-09 19:35:43 +02:00
#endif // !SDSUPPORT
#if ENABLED(DIGIPOT_I2C)
extern void digipot_i2c_set_current(uint8_t channel, float current);
extern void digipot_i2c_init();
#endif
2015-04-14 02:17:36 +02:00
/**
2017-03-20 03:31:06 +01:00
* Inject the next "immediate" command, when possible, onto the front of the queue.
* Return true if any immediate commands remain to inject.
2015-04-14 02:17:36 +02:00
*/
2016-10-05 04:32:37 +02:00
static bool drain_injected_commands_P() {
if (injected_commands_P != NULL) {
size_t i = 0;
char c, cmd[30];
2016-10-05 04:32:37 +02:00
strncpy_P(cmd, injected_commands_P, sizeof(cmd) - 1);
cmd[sizeof(cmd) - 1] = '\0';
while ((c = cmd[i]) && c != '\n') i++; // find the end of this gcode command
cmd[i] = '\0';
if (enqueue_and_echo_command(cmd)) // success?
injected_commands_P = c ? injected_commands_P + i + 1 : NULL; // next command or done
}
2017-03-20 03:31:06 +01:00
return (injected_commands_P != NULL); // return whether any more remain
}
2015-04-14 02:17:36 +02:00
/**
* Record one or many commands to run from program memory.
* Aborts the current queue, if any.
2016-10-05 04:32:37 +02:00
* Note: drain_injected_commands_P() must be called repeatedly to drain the commands afterwards
2015-04-14 02:17:36 +02:00
*/
void enqueue_and_echo_commands_P(const char * const pgcode) {
2016-10-05 04:32:37 +02:00
injected_commands_P = pgcode;
2018-01-02 03:21:54 +01:00
(void)drain_injected_commands_P(); // first command executed asap (when possible)
}
2017-03-20 03:31:06 +01:00
/**
* Clear the Marlin command queue
*/
void clear_command_queue() {
2018-01-18 23:48:12 +01:00
cmd_queue_index_r = cmd_queue_index_w = commands_in_queue = 0;
}
2015-04-14 02:17:36 +02:00
/**
2016-02-21 02:35:35 +01:00
* Once a new command is in the ring buffer, call this to commit it
2015-04-14 02:17:36 +02:00
*/
2016-02-21 02:35:35 +01:00
inline void _commit_command(bool say_ok) {
send_ok[cmd_queue_index_w] = say_ok;
2017-05-05 09:57:22 +02:00
if (++cmd_queue_index_w >= BUFSIZE) cmd_queue_index_w = 0;
2015-04-14 02:17:36 +02:00
commands_in_queue++;
2016-02-21 02:35:35 +01:00
}
/**
2017-03-20 03:31:06 +01:00
* Copy a command from RAM into the main command buffer.
* Return true if the command was successfully added.
* Return false for a full buffer, or if the 'command' is a comment.
2016-02-21 02:35:35 +01:00
*/
inline bool _enqueuecommand(const char* cmd, bool say_ok=false) {
if (*cmd == ';' || commands_in_queue >= BUFSIZE) return false;
strcpy(command_queue[cmd_queue_index_w], cmd);
_commit_command(say_ok);
return true;
}
2016-02-21 02:35:35 +01:00
/**
* Enqueue with Serial Echo
*/
bool enqueue_and_echo_command(const char* cmd) {
if (_enqueuecommand(cmd)) {
2017-06-09 17:51:23 +02:00
SERIAL_ECHO_START();
2017-04-02 15:36:58 +02:00
SERIAL_ECHOPAIR(MSG_ENQUEUEING, cmd);
SERIAL_CHAR('"');
2017-06-09 17:51:23 +02:00
SERIAL_EOL();
2016-02-21 02:35:35 +01:00
return true;
}
return false;
}
2018-01-02 03:21:54 +01:00
#if HAS_QUEUE_NOW
void enqueue_and_echo_command_now(const char* cmd) {
while (!enqueue_and_echo_command(cmd)) idle();
2018-01-02 03:21:54 +01:00
}
#if HAS_LCD_QUEUE_NOW
void enqueue_and_echo_commands_now_P(const char * const pgcode) {
2018-01-02 03:21:54 +01:00
enqueue_and_echo_commands_P(pgcode);
while (drain_injected_commands_P()) idle();
}
#endif
#endif
2015-04-14 02:17:36 +02:00
void setup_killpin() {
2015-04-04 00:31:35 +02:00
#if HAS_KILL
2017-03-08 06:43:33 +01:00
SET_INPUT_PULLUP(KILL_PIN);
#endif
}
2015-04-14 02:17:36 +02:00
void setup_powerhold() {
2015-04-04 00:31:35 +02:00
#if HAS_SUICIDE
2015-03-03 09:48:20 +01:00
OUT_WRITE(SUICIDE_PIN, HIGH);
#endif
#if HAS_POWER_SWITCH
#if ENABLED(PS_DEFAULT_OFF)
PSU_OFF();
#else
PSU_ON();
2015-03-03 09:48:20 +01:00
#endif
#endif
}
2015-04-14 02:17:36 +02:00
void suicide() {
2015-04-04 00:31:35 +02:00
#if HAS_SUICIDE
2015-03-03 09:48:20 +01:00
OUT_WRITE(SUICIDE_PIN, LOW);
#endif
}
2015-04-14 02:17:36 +02:00
void servo_init() {
2015-04-04 00:31:35 +02:00
#if NUM_SERVOS >= 1 && HAS_SERVO_0
servo[0].attach(SERVO0_PIN);
2015-07-24 11:38:15 +02:00
servo[0].detach(); // Just set up the pin. We don't have a position yet. Don't move to a random position.
#endif
2015-04-04 00:31:35 +02:00
#if NUM_SERVOS >= 2 && HAS_SERVO_1
servo[1].attach(SERVO1_PIN);
2015-07-24 11:38:15 +02:00
servo[1].detach();
#endif
2015-04-04 00:31:35 +02:00
#if NUM_SERVOS >= 3 && HAS_SERVO_2
servo[2].attach(SERVO2_PIN);
2015-07-24 11:38:15 +02:00
servo[2].detach();
#endif
2015-04-04 00:31:35 +02:00
#if NUM_SERVOS >= 4 && HAS_SERVO_3
servo[3].attach(SERVO3_PIN);
2015-07-24 11:38:15 +02:00
servo[3].detach();
#endif
2018-04-02 06:51:12 +02:00
#if HAS_Z_SERVO_PROBE
2015-12-03 14:19:29 +01:00
/**
2016-06-14 05:18:24 +02:00
* Set position of Z Servo Endstop
2015-12-03 14:19:29 +01:00
*
* The servo might be deployed and positioned too low to stow
* when starting up the machine or rebooting the board.
* There's no way to know where the nozzle is positioned until
* homing has been done - no homing with z-probe without init!
*
*/
2016-06-14 05:18:24 +02:00
STOW_Z_SERVO();
#endif
}
2015-07-11 03:15:24 +02:00
/**
* Stepper Reset (RigidBoard, et.al.)
*/
#if HAS_STEPPER_RESET
void disableStepperDrivers() {
2016-09-25 12:52:10 +02:00
OUT_WRITE(STEPPER_RESET_PIN, LOW); // drive it down to hold in reset motor driver chips
2015-07-11 03:15:24 +02:00
}
2016-09-25 12:52:10 +02:00
void enableStepperDrivers() { SET_INPUT(STEPPER_RESET_PIN); } // set to input, which allows it to be pulled high by pullups
2015-07-11 03:15:24 +02:00
#endif
2016-08-11 08:04:18 +02:00
#if ENABLED(EXPERIMENTAL_I2CBUS) && I2C_SLAVE_ADDRESS > 0
2016-08-12 02:57:22 +02:00
void i2c_on_receive(int bytes) { // just echo all bytes received to serial
i2c.receive(bytes);
}
void i2c_on_request() { // just send dummy data for now
2016-08-14 03:06:10 +02:00
i2c.reply("Hello World!\n");
2016-08-11 08:04:18 +02:00
}
#endif
void gcode_line_error(const char* err, bool doFlush = true) {
2017-06-09 17:51:23 +02:00
SERIAL_ERROR_START();
serialprintPGM(err);
SERIAL_ERRORLN(gcode_LastN);
//Serial.println(gcode_N);
if (doFlush) flush_and_request_resend();
serial_count = 0;
}
2017-03-20 03:31:06 +01:00
/**
* Get all commands waiting on the serial port and queue them.
* Exit when the buffer is full or when no more characters are
* left on the serial port.
*/
inline void get_serial_commands() {
2016-02-21 02:35:35 +01:00
static char serial_line_buffer[MAX_CMD_SIZE];
static bool serial_comment_mode = false;
2016-02-21 02:35:35 +01:00
// If the command buffer is empty for too long,
// send "wait" to indicate Marlin is still waiting.
2018-02-09 07:43:37 +01:00
#if NO_TIMEOUTS > 0
static millis_t last_command_time = 0;
2017-03-29 02:45:54 +02:00
const millis_t ms = millis();
if (commands_in_queue == 0 && !MYSERIAL0.available() && ELAPSED(ms, last_command_time + NO_TIMEOUTS)) {
SERIAL_ECHOLNPGM(MSG_WAIT);
last_command_time = ms;
}
#endif
2015-05-17 05:59:04 +02:00
2016-03-27 05:36:36 +02:00
/**
* Loop while serial characters are incoming and the queue is not full
*/
int c;
while (commands_in_queue < BUFSIZE && (c = MYSERIAL0.read()) >= 0) {
2015-05-17 05:59:04 +02:00
char serial_char = c;
2015-04-14 02:17:36 +02:00
2016-03-27 05:36:36 +02:00
/**
* If the character ends the line
*/
2016-02-21 02:35:35 +01:00
if (serial_char == '\n' || serial_char == '\r') {
2015-05-17 05:59:04 +02:00
serial_comment_mode = false; // end of line == end of comment
// Skip empty lines and comments
if (!serial_count) { thermalManager.manage_heater(); continue; }
2015-04-13 03:07:08 +02:00
serial_line_buffer[serial_count] = 0; // Terminate string
serial_count = 0; // Reset buffer
2015-04-13 03:07:08 +02:00
2016-02-21 02:35:35 +01:00
char* command = serial_line_buffer;
2015-04-13 03:07:08 +02:00
while (*command == ' ') command++; // Skip leading spaces
char *npos = (*command == 'N') ? command : NULL; // Require the N parameter to start the line
2015-05-17 14:00:09 +02:00
if (npos) {
bool M110 = strstr_P(command, PSTR("M110")) != NULL;
if (M110) {
char* n2pos = strchr(command + 4, 'N');
if (n2pos) npos = n2pos;
}
2015-05-17 14:00:09 +02:00
gcode_N = strtol(npos + 1, NULL, 10);
2018-09-27 22:38:07 +02:00
if (gcode_N != gcode_LastN + 1 && !M110)
return gcode_line_error(PSTR(MSG_ERR_LINE_NO));
char *apos = strrchr(command, '*');
2015-05-17 14:00:09 +02:00
if (apos) {
uint8_t checksum = 0, count = uint8_t(apos - command);
while (count) checksum ^= command[--count];
2018-09-27 22:38:07 +02:00
if (strtol(apos + 1, NULL, 10) != checksum)
return gcode_line_error(PSTR(MSG_ERR_CHECKSUM_MISMATCH));
}
2018-09-27 22:38:07 +02:00
else
return gcode_line_error(PSTR(MSG_ERR_NO_CHECKSUM));
gcode_LastN = gcode_N;
}
#if ENABLED(SDSUPPORT)
2018-09-27 22:38:07 +02:00
else if (card.saving && strcmp(command, "M29") != 0) // No line number with M29 in Pronterface
return gcode_line_error(PSTR(MSG_ERR_NO_CHECKSUM));
#endif
2015-04-13 03:07:08 +02:00
2015-05-17 14:00:09 +02:00
// Movement commands alert when stopped
if (IsStopped()) {
char* gpos = strchr(command, 'G');
2015-05-17 14:00:09 +02:00
if (gpos) {
2018-09-27 22:38:07 +02:00
switch (strtol(gpos + 1, NULL, 10)) {
2015-05-17 14:00:09 +02:00
case 0:
case 1:
2018-09-27 22:38:07 +02:00
#if ENABLED(ARC_SUPPORT)
case 2:
case 3:
#endif
#if ENABLED(BEZIER_CURVE_SUPPORT)
case 5:
#endif
2015-04-13 03:07:08 +02:00
SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
LCD_MESSAGEPGM(MSG_STOPPED);
2015-05-17 14:00:09 +02:00
break;
}
2015-08-05 13:40:36 +02:00
}
}
#if DISABLED(EMERGENCY_PARSER)
2018-02-07 03:29:57 +01:00
// Process critical commands early
if (strcmp(command, "M108") == 0) {
wait_for_heatup = false;
2018-02-08 11:03:05 +01:00
#if ENABLED(NEWPANEL)
wait_for_user = false;
#endif
}
if (strcmp(command, "M112") == 0) kill(PSTR(MSG_KILLED));
2018-02-07 03:29:57 +01:00
if (strcmp(command, "M410") == 0) quickstop_stepper();
#endif
2016-02-21 02:35:35 +01:00
#if defined(NO_TIMEOUTS) && NO_TIMEOUTS > 0
last_command_time = ms;
#endif
2016-02-21 02:35:35 +01:00
// Add the command to the queue
_enqueuecommand(serial_line_buffer, true);
}
else if (serial_count >= MAX_CMD_SIZE - 1) {
// Keep fetching, but ignore normal characters beyond the max length
// The command will be injected when EOL is reached
}
2018-02-09 11:06:44 +01:00
else if (serial_char == '\\') { // Handle escapes
if ((c = MYSERIAL0.read()) >= 0 && !serial_comment_mode) // if we have one more character, copy it over
2018-02-09 11:06:44 +01:00
serial_line_buffer[serial_count++] = (char)c;
2015-04-13 03:07:08 +02:00
// otherwise do nothing
}
2016-02-21 02:35:35 +01:00
else { // it's not a newline, carriage return or escape char
if (serial_char == ';') serial_comment_mode = true;
if (!serial_comment_mode) serial_line_buffer[serial_count++] = serial_char;
}
2016-02-21 02:35:35 +01:00
} // queue has space, serial has data
}
#if ENABLED(SDSUPPORT)
#if ENABLED(PRINTER_EVENT_LEDS) && HAS_RESUME_CONTINUE
static bool lights_off_after_print; // = false
#endif
2017-03-20 03:31:06 +01:00
/**
* Get commands from the SD Card until the command buffer is full
* or until the end of the file is reached. The special character '#'
* can also interrupt buffering.
*/
inline void get_sdcard_commands() {
2016-02-21 02:35:35 +01:00
static bool stop_buffering = false,
sd_comment_mode = false;
if (!card.sdprinting) return;
2015-04-13 03:07:08 +02:00
2016-03-27 05:36:36 +02:00
/**
* '#' stops reading from SD to the buffer prematurely, so procedural
* macro calls are possible. If it occurs, stop_buffering is triggered
* and the buffer is run dry; this character _can_ occur in serial com
* due to checksums, however, no checksums are used in SD printing.
*/
2015-04-13 03:07:08 +02:00
2015-04-14 02:17:36 +02:00
if (commands_in_queue == 0) stop_buffering = false;
2015-04-13 03:07:08 +02:00
2016-02-21 02:35:35 +01:00
uint16_t sd_count = 0;
bool card_eof = card.eof();
while (commands_in_queue < BUFSIZE && !card_eof && !stop_buffering) {
2017-03-20 03:31:06 +01:00
const int16_t n = card.get();
2016-02-21 02:35:35 +01:00
char sd_char = (char)n;
card_eof = card.eof();
if (card_eof || n == -1
|| sd_char == '\n' || sd_char == '\r'
|| ((sd_char == '#' || sd_char == ':') && !sd_comment_mode)
2015-04-13 03:07:08 +02:00
) {
2016-02-21 02:35:35 +01:00
if (card_eof) {
2017-11-15 05:49:33 +01:00
2015-04-13 03:07:08 +02:00
card.printingHasFinished();
2017-11-15 05:49:33 +01:00
if (card.sdprinting)
sd_count = 0; // If a sub-file was printing, continue from call point
else {
SERIAL_PROTOCOLLNPGM(MSG_FILE_PRINTED);
#if ENABLED(PRINTER_EVENT_LEDS)
LCD_MESSAGEPGM(MSG_INFO_COMPLETED_PRINTS);
2017-11-28 06:02:44 +01:00
leds.set_green();
2017-11-15 05:49:33 +01:00
#if HAS_RESUME_CONTINUE
lights_off_after_print = true;
enqueue_and_echo_commands_P(PSTR("M0 S"
#if ENABLED(NEWPANEL)
"1800"
#else
"60"
#endif
));
2017-11-15 05:49:33 +01:00
#else
safe_delay(2000);
leds.set_off();
2017-11-15 05:49:33 +01:00
#endif
#endif // PRINTER_EVENT_LEDS
2017-11-15 05:49:33 +01:00
}
2015-04-13 03:07:08 +02:00
}
2016-06-20 02:14:56 +02:00
else if (n == -1) {
2017-06-09 17:51:23 +02:00
SERIAL_ERROR_START();
2016-06-20 02:14:56 +02:00
SERIAL_ECHOLNPGM(MSG_SD_ERR_READ);
}
2016-02-21 02:35:35 +01:00
if (sd_char == '#') stop_buffering = true;
2017-03-20 03:31:06 +01:00
sd_comment_mode = false; // for new command
2016-02-21 02:35:35 +01:00
// Skip empty lines and comments
if (!sd_count) { thermalManager.manage_heater(); continue; }
2016-02-21 02:35:35 +01:00
2017-03-20 03:31:06 +01:00
command_queue[cmd_queue_index_w][sd_count] = '\0'; // terminate string
sd_count = 0; // clear sd line buffer
2016-02-21 02:35:35 +01:00
_commit_command(false);
}
else if (sd_count >= MAX_CMD_SIZE - 1) {
2016-03-27 05:36:36 +02:00
/**
* Keep fetching, but ignore normal characters beyond the max length
* The command will be injected when EOL is reached
*/
2015-04-13 03:07:08 +02:00
}
else {
2016-02-21 02:35:35 +01:00
if (sd_char == ';') sd_comment_mode = true;
if (!sd_comment_mode) command_queue[cmd_queue_index_w][sd_count++] = sd_char;
2015-04-13 03:07:08 +02:00
}
}
}
2018-04-21 23:12:04 +02:00
#if ENABLED(POWER_LOSS_RECOVERY)
inline bool drain_job_recovery_commands() {
static uint8_t job_recovery_commands_index = 0; // Resets on reboot
if (job_recovery_commands_count) {
if (_enqueuecommand(job_recovery_commands[job_recovery_commands_index])) {
++job_recovery_commands_index;
if (!--job_recovery_commands_count) job_recovery_phase = JOB_RECOVERY_DONE;
2018-04-21 23:12:04 +02:00
}
return true;
}
return false;
}
#endif
#endif // SDSUPPORT
/**
* Add to the circular command queue the next command from:
2016-10-05 04:32:37 +02:00
* - The command-injection queue (injected_commands_P)
* - The active serial input (usually USB)
2018-04-21 23:12:04 +02:00
* - Commands left in the queue after power-loss
* - The SD card file being actively printed
*/
void get_available_commands() {
2018-04-21 23:12:04 +02:00
// Immediate commands block the other queues
2016-10-05 04:32:37 +02:00
if (drain_injected_commands_P()) return;
get_serial_commands();
2018-04-21 23:12:04 +02:00
#if ENABLED(POWER_LOSS_RECOVERY)
// Commands for power-loss recovery take precedence
if (job_recovery_phase == JOB_RECOVERY_YES && drain_job_recovery_commands()) return;
#endif
#if ENABLED(SDSUPPORT)
get_sdcard_commands();
#endif
}
/**
* Set target_extruder from the T parameter or the active_extruder
*
* Returns TRUE if the target is invalid
*/
2017-06-27 09:36:19 +02:00
bool get_target_extruder_from_command(const uint16_t code) {
2017-06-27 06:31:45 +02:00
if (parser.seenval('T')) {
2017-06-27 09:36:19 +02:00
const int8_t e = parser.value_byte();
if (e >= EXTRUDERS) {
2017-06-09 17:51:23 +02:00
SERIAL_ECHO_START();
SERIAL_CHAR('M');
SERIAL_ECHO(code);
2017-06-27 09:36:19 +02:00
SERIAL_ECHOLNPAIR(" " MSG_INVALID_EXTRUDER " ", e);
return true;
}
2017-06-27 09:36:19 +02:00
target_extruder = e;
}
else
target_extruder = active_extruder;
return false;
}
2016-07-20 19:30:10 +02:00
#if ENABLED(DUAL_X_CARRIAGE) || ENABLED(DUAL_NOZZLE_DUPLICATION_MODE)
bool extruder_duplication_enabled = false; // Used in Dual X mode 2
#endif
#if ENABLED(DUAL_X_CARRIAGE)
static DualXMode dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
static float x_home_pos(const int extruder) {
if (extruder == 0)
2017-11-03 02:17:51 +01:00
return base_home_pos(X_AXIS);
else
2016-03-27 05:36:36 +02:00
/**
* In dual carriage mode the extruder offset provides an override of the
* second X-carriage position when homed - otherwise X2_HOME_POS is used.
* This allows soft recalibration of the second extruder home position
2016-03-27 05:36:36 +02:00
* without firmware reflash (through the M218 command).
*/
2017-11-03 02:17:51 +01:00
return hotend_offset[X_AXIS][1] > 0 ? hotend_offset[X_AXIS][1] : X2_HOME_POS;
}
static int x_home_dir(const int extruder) { return extruder ? X2_HOME_DIR : X_HOME_DIR; }
static float inactive_extruder_x_pos = X2_MAX_POS; // used in mode 0 & 1
2016-07-25 01:34:31 +02:00
static bool active_extruder_parked = false; // used in mode 1 & 2
2017-03-18 03:14:05 +01:00
static float raised_parked_position[XYZE]; // used in mode 1
2016-07-25 01:34:31 +02:00
static millis_t delayed_move_time = 0; // used in mode 1
static float duplicate_extruder_x_offset = DEFAULT_DUPLICATION_X_OFFSET; // used in mode 2
static int16_t duplicate_extruder_temp_offset = 0; // used in mode 2
2016-10-05 12:50:22 +02:00
#endif // DUAL_X_CARRIAGE
#if HAS_WORKSPACE_OFFSET || ENABLED(DUAL_X_CARRIAGE) || ENABLED(DELTA)
2017-03-05 01:01:33 +01:00
/**
* Software endstops can be used to monitor the open end of
* an axis that has a hardware endstop on the other end. Or
* they can prevent axes from moving past endstops and grinding.
*
* To keep doing their job as the coordinate system changes,
* the software endstop positions must be refreshed to remain
* at the same positions relative to the machine.
*/
void update_software_endstops(const AxisEnum axis) {
#if HAS_HOME_OFFSET && HAS_POSITION_SHIFT
workspace_offset[axis] = home_offset[axis] + position_shift[axis];
#endif
2016-12-03 07:27:10 +01:00
2017-03-05 01:01:33 +01:00
#if ENABLED(DUAL_X_CARRIAGE)
if (axis == X_AXIS) {
2016-12-03 07:27:10 +01:00
2017-03-05 01:01:33 +01:00
// In Dual X mode hotend_offset[X] is T1's home position
const float dual_max_x = MAX(hotend_offset[X_AXIS][1], X2_MAX_POS);
2017-03-05 01:01:33 +01:00
if (active_extruder != 0) {
// T1 can move from X2_MIN_POS to X2_MAX_POS or X2 home position (whichever is larger)
soft_endstop_min[X_AXIS] = X2_MIN_POS;
soft_endstop_max[X_AXIS] = dual_max_x;
2017-03-05 01:01:33 +01:00
}
else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) {
// In Duplication Mode, T0 can move as far left as X_MIN_POS
// but not so far to the right that T1 would move past the end
soft_endstop_min[X_AXIS] = base_min_pos(X_AXIS);
soft_endstop_max[X_AXIS] = MIN(base_max_pos(X_AXIS), dual_max_x - duplicate_extruder_x_offset);
2017-03-05 01:01:33 +01:00
}
else {
// In other modes, T0 can move from X_MIN_POS to X_MAX_POS
soft_endstop_min[axis] = base_min_pos(axis);
soft_endstop_max[axis] = base_max_pos(axis);
2017-03-05 01:01:33 +01:00
}
}
#elif ENABLED(DELTA)
soft_endstop_min[axis] = base_min_pos(axis);
soft_endstop_max[axis] = axis == Z_AXIS ? delta_height : base_max_pos(axis);
#else
soft_endstop_min[axis] = base_min_pos(axis);
soft_endstop_max[axis] = base_max_pos(axis);
2017-03-05 01:01:33 +01:00
#endif
2017-03-05 01:01:33 +01:00
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) {
SERIAL_ECHOPAIR("For ", axis_codes[axis]);
#if HAS_HOME_OFFSET
2017-03-05 01:01:33 +01:00
SERIAL_ECHOPAIR(" axis:\n home_offset = ", home_offset[axis]);
#endif
#if HAS_POSITION_SHIFT
2017-03-05 01:01:33 +01:00
SERIAL_ECHOPAIR("\n position_shift = ", position_shift[axis]);
#endif
SERIAL_ECHOPAIR("\n soft_endstop_min = ", soft_endstop_min[axis]);
SERIAL_ECHOLNPAIR("\n soft_endstop_max = ", soft_endstop_max[axis]);
}
#endif
2017-03-05 01:01:33 +01:00
#if ENABLED(DELTA)
2018-06-02 23:50:22 +02:00
switch (axis) {
#if HAS_SOFTWARE_ENDSTOPS
case X_AXIS:
case Y_AXIS:
// Get a minimum radius for clamping
soft_endstop_radius = MIN3(ABS(MAX(soft_endstop_min[X_AXIS], soft_endstop_min[Y_AXIS])), soft_endstop_max[X_AXIS], soft_endstop_max[Y_AXIS]);
soft_endstop_radius_2 = sq(soft_endstop_radius);
break;
#endif
2017-10-30 20:13:13 +01:00
case Z_AXIS:
delta_clip_start_height = soft_endstop_max[axis] - delta_safe_distance_from_top();
default: break;
}
2017-03-05 01:01:33 +01:00
#endif
}
#endif // HAS_WORKSPACE_OFFSET || DUAL_X_CARRIAGE || DELTA
#if HAS_M206_COMMAND
2017-03-05 01:01:33 +01:00
/**
2018-01-22 13:14:50 +01:00
* Change the home offset for an axis.
* Also refreshes the workspace offset.
2017-03-05 01:01:33 +01:00
*/
static void set_home_offset(const AxisEnum axis, const float v) {
2017-03-05 01:01:33 +01:00
home_offset[axis] = v;
update_software_endstops(axis);
}
#endif // HAS_M206_COMMAND
2016-09-15 09:47:32 +02:00
/**
* Set an axis' current position to its home position (after homing).
*
* For Core and Cartesian robots this applies one-to-one when an
* individual axis has been homed.
*
* DELTA should wait until all homing is done before setting the XYZ
* current_position to home, because homing is a single operation.
* In the case where the axis positions are already known and previously
* homed, DELTA could home to X or Y individually by moving either one
* to the center. However, homing Z always homes XY and Z.
*
* SCARA should wait until all XY homing is done before setting the XY
* current_position to home, because neither X nor Y is at home until
* both are at home. Z can however be homed individually.
2016-09-26 08:30:34 +02:00
*
2016-11-07 07:21:45 +01:00
* Callers must sync the planner position after calling this!
2016-09-15 09:47:32 +02:00
*/
2017-06-06 00:41:38 +02:00
static void set_axis_is_at_home(const AxisEnum axis) {
2016-04-06 03:30:53 +02:00
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) {
2016-08-19 08:09:03 +02:00
SERIAL_ECHOPAIR(">>> set_axis_is_at_home(", axis_codes[axis]);
2016-10-02 08:48:17 +02:00
SERIAL_CHAR(')');
2017-06-09 17:51:23 +02:00
SERIAL_EOL();
2016-04-06 03:30:53 +02:00
}
#endif
2018-06-12 04:42:39 +02:00
SBI(axis_known_position, axis);
SBI(axis_homed, axis);
#if HAS_POSITION_SHIFT
2017-03-05 01:01:33 +01:00
position_shift[axis] = 0;
update_software_endstops(axis);
#endif
#if ENABLED(DUAL_X_CARRIAGE)
if (axis == X_AXIS && (active_extruder == 1 || dual_x_carriage_mode == DXC_DUPLICATION_MODE)) {
current_position[X_AXIS] = x_home_pos(active_extruder);
return;
}
#endif
2016-09-12 10:48:29 +02:00
#if ENABLED(MORGAN_SCARA)
2015-08-05 13:40:36 +02:00
2016-09-21 23:47:12 +02:00
/**
* Morgan SCARA homes XY at the same time
*/
2015-04-24 03:16:44 +02:00
if (axis == X_AXIS || axis == Y_AXIS) {
2017-11-03 02:17:51 +01:00
float homeposition[XYZ] = {
base_home_pos(X_AXIS),
base_home_pos(Y_AXIS),
base_home_pos(Z_AXIS)
};
2016-09-13 00:49:35 +02:00
// SERIAL_ECHOPAIR("homeposition X:", homeposition[X_AXIS]);
// SERIAL_ECHOLNPAIR(" Y:", homeposition[Y_AXIS]);
2016-03-27 05:36:36 +02:00
/**
2016-09-15 20:34:24 +02:00
* Get Home position SCARA arm angles using inverse kinematics,
* and calculate homing offset using forward kinematics
2016-03-27 05:36:36 +02:00
*/
2016-07-22 00:46:22 +02:00
inverse_kinematics(homeposition);
2016-09-12 10:48:29 +02:00
forward_kinematics_SCARA(delta[A_AXIS], delta[B_AXIS]);
2015-08-05 13:40:36 +02:00
2016-09-13 00:49:35 +02:00
// SERIAL_ECHOPAIR("Cartesian X:", cartes[X_AXIS]);
// SERIAL_ECHOLNPAIR(" Y:", cartes[Y_AXIS]);
2015-08-05 13:40:36 +02:00
2017-11-03 02:17:51 +01:00
current_position[axis] = cartes[axis];
2015-08-05 13:40:36 +02:00
2016-03-27 05:36:36 +02:00
/**
* SCARA home positions are based on configuration since the actual
* limits are determined by the inverse kinematic transform.
*/
2016-09-12 10:48:29 +02:00
soft_endstop_min[axis] = base_min_pos(axis); // + (cartes[axis] - base_home_pos(axis));
soft_endstop_max[axis] = base_max_pos(axis); // + (cartes[axis] - base_home_pos(axis));
}
2015-04-24 03:16:44 +02:00
else
#elif ENABLED(DELTA)
if (axis == Z_AXIS)
current_position[axis] = delta_height;
else
2015-04-24 03:16:44 +02:00
#endif
{
2017-11-03 02:17:51 +01:00
current_position[axis] = base_home_pos(axis);
2016-09-21 23:47:12 +02:00
}
2016-09-21 23:47:12 +02:00
/**
* Z Probe Z Homing? Account for the probe's Z offset.
*/
#if HAS_BED_PROBE && Z_HOME_DIR < 0
if (axis == Z_AXIS) {
2016-09-21 23:47:12 +02:00
#if HOMING_Z_WITH_PROBE
current_position[Z_AXIS] -= zprobe_zoffset;
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) {
SERIAL_ECHOLNPGM("*** Z HOMED WITH PROBE (Z_MIN_PROBE_USES_Z_MIN_ENDSTOP_PIN) ***");
SERIAL_ECHOLNPAIR("> zprobe_zoffset = ", zprobe_zoffset);
}
#endif
2016-09-21 23:47:12 +02:00
#elif ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("*** Z HOMED TO ENDSTOP (Z_MIN_PROBE_ENDSTOP) ***");
#endif
}
2016-09-21 23:47:12 +02:00
#endif
2016-04-06 03:30:53 +02:00
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) {
#if HAS_HOME_OFFSET
2017-03-05 01:01:33 +01:00
SERIAL_ECHOPAIR("> home_offset[", axis_codes[axis]);
SERIAL_ECHOLNPAIR("] = ", home_offset[axis]);
#endif
2016-09-21 23:47:12 +02:00
DEBUG_POS("", current_position);
2016-08-19 08:09:03 +02:00
SERIAL_ECHOPAIR("<<< set_axis_is_at_home(", axis_codes[axis]);
2016-10-02 08:48:17 +02:00
SERIAL_CHAR(')');
2017-06-09 17:51:23 +02:00
SERIAL_EOL();
2016-04-06 03:30:53 +02:00
}
#endif
#if ENABLED(I2C_POSITION_ENCODERS)
I2CPEM.homed(axis);
#endif
}
/**
2018-04-30 10:00:04 +02:00
* Homing bump feedrate (mm/s)
*/
2017-06-06 00:41:38 +02:00
inline float get_homing_bump_feedrate(const AxisEnum axis) {
#if HOMING_Z_WITH_PROBE
2018-04-30 10:00:04 +02:00
if (axis == Z_AXIS) return MMM_TO_MMS(Z_PROBE_SPEED_SLOW);
#endif
2017-06-08 21:59:21 +02:00
static const uint8_t homing_bump_divisor[] PROGMEM = HOMING_BUMP_DIVISOR;
uint8_t hbd = pgm_read_byte(&homing_bump_divisor[axis]);
if (hbd < 1) {
hbd = 10;
2017-06-09 17:51:23 +02:00
SERIAL_ECHO_START();
SERIAL_ECHOLNPGM("Warning: Homing Bump Divisor < 1");
}
return homing_feedrate(axis) / hbd;
}
2018-04-30 10:00:04 +02:00
/**
* Some planner shorthand inline functions
*/
2017-06-06 00:41:38 +02:00
/**
* Move the planner to the current position from wherever it last moved
* (or from wherever it has been told it is located).
2018-09-09 04:17:02 +02:00
*
* Impossible on Hangprinter because current_position and position are of different sizes
2017-06-06 00:41:38 +02:00
*/
2017-11-09 04:28:11 +01:00
inline void buffer_line_to_current_position() {
2018-09-09 04:17:02 +02:00
#if DISABLED(HANGPRINTER) // emptying this function probably breaks do_blocking_move_to()
planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_CART], feedrate_mm_s, active_extruder);
#endif
2016-09-22 14:49:49 +02:00
}
2017-06-06 00:41:38 +02:00
/**
* Move the planner to the position stored in the destination array, which is
* used by G0/G1/G2/G3/G5 and many other functions to set a destination.
*/
2018-01-04 05:52:25 +01:00
inline void buffer_line_to_destination(const float &fr_mm_s) {
2018-09-09 04:17:02 +02:00
#if ENABLED(HANGPRINTER)
UNUSED(fr_mm_s);
#else
planner.buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_CART], fr_mm_s, active_extruder);
#endif
2016-09-22 14:49:49 +02:00
}
2016-09-15 20:21:59 +02:00
#if IS_KINEMATIC
/**
* Calculate delta, start a line, and set current_position to destination
*/
void prepare_uninterpolated_move_to_destination(const float fr_mm_s=0) {
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) DEBUG_POS("prepare_uninterpolated_move_to_destination", destination);
#endif
2016-09-22 01:47:11 +02:00
2017-12-09 10:26:48 +01:00
#if UBL_SEGMENTED
// ubl segmented line will do z-only moves in single segment
ubl.prepare_segmented_line_to(destination, MMS_SCALED(fr_mm_s ? fr_mm_s : feedrate_mm_s));
#else
if ( current_position[X_AXIS] == destination[X_AXIS]
&& current_position[Y_AXIS] == destination[Y_AXIS]
&& current_position[Z_AXIS] == destination[Z_AXIS]
2018-09-09 04:17:02 +02:00
&& current_position[E_CART] == destination[E_CART]
) return;
planner.buffer_line_kinematic(destination, MMS_SCALED(fr_mm_s ? fr_mm_s : feedrate_mm_s), active_extruder);
#endif
2017-06-04 18:30:03 +02:00
set_current_from_destination();
}
2016-09-22 00:27:37 +02:00
#endif // IS_KINEMATIC
/**
* Plan a move to (X, Y, Z) and set the current_position.
* The final current_position may not be the one that was requested
* Caution: 'destination' is modified by this function.
*/
void do_blocking_move_to(const float rx, const float ry, const float rz, const float &fr_mm_s/*=0.0*/) {
const float old_feedrate_mm_s = feedrate_mm_s;
#if ENABLED(DEBUG_LEVELING_FEATURE)
2017-11-03 02:17:51 +01:00
if (DEBUGGING(LEVELING)) print_xyz(PSTR(">>> do_blocking_move_to"), NULL, LOGICAL_X_POSITION(rx), LOGICAL_Y_POSITION(ry), LOGICAL_Z_POSITION(rz));
#endif
2017-11-11 03:37:41 +01:00
const float z_feedrate = fr_mm_s ? fr_mm_s : homing_feedrate(Z_AXIS);
#if ENABLED(DELTA)
2017-11-03 02:17:51 +01:00
if (!position_is_reachable(rx, ry)) return;
2016-09-21 23:47:12 +02:00
feedrate_mm_s = fr_mm_s ? fr_mm_s : XY_PROBE_FEEDRATE_MM_S;
set_destination_from_current(); // sync destination at the start
2016-07-22 23:18:08 +02:00
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) DEBUG_POS("set_destination_from_current", destination);
#endif
// when in the danger zone
if (current_position[Z_AXIS] > delta_clip_start_height) {
2017-11-03 02:17:51 +01:00
if (rz > delta_clip_start_height) { // staying in the danger zone
destination[X_AXIS] = rx; // move directly (uninterpolated)
destination[Y_AXIS] = ry;
destination[Z_AXIS] = rz;
prepare_uninterpolated_move_to_destination(); // set_current_from_destination
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) DEBUG_POS("danger zone move", current_position);
#endif
return;
2016-07-22 23:18:08 +02:00
}
2017-11-11 03:37:41 +01:00
destination[Z_AXIS] = delta_clip_start_height;
prepare_uninterpolated_move_to_destination(); // set_current_from_destination
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) DEBUG_POS("zone border move", current_position);
#endif
}
2016-07-22 23:18:08 +02:00
2017-11-03 02:17:51 +01:00
if (rz > current_position[Z_AXIS]) { // raising?
destination[Z_AXIS] = rz;
2017-11-11 03:37:41 +01:00
prepare_uninterpolated_move_to_destination(z_feedrate); // set_current_from_destination
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) DEBUG_POS("z raise move", current_position);
#endif
}
2016-07-22 23:18:08 +02:00
2017-11-03 02:17:51 +01:00
destination[X_AXIS] = rx;
destination[Y_AXIS] = ry;
prepare_move_to_destination(); // set_current_from_destination
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) DEBUG_POS("xy move", current_position);
#endif
2017-11-03 02:17:51 +01:00
if (rz < current_position[Z_AXIS]) { // lowering?
destination[Z_AXIS] = rz;
2017-11-11 03:37:41 +01:00
prepare_uninterpolated_move_to_destination(z_feedrate); // set_current_from_destination
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) DEBUG_POS("z lower move", current_position);
#endif
}
2016-09-15 20:21:59 +02:00
#elif IS_SCARA
2017-11-03 02:17:51 +01:00
if (!position_is_reachable(rx, ry)) return;
set_destination_from_current();
2016-09-15 20:21:59 +02:00
// If Z needs to raise, do it before moving XY
2017-11-03 02:17:51 +01:00
if (destination[Z_AXIS] < rz) {
destination[Z_AXIS] = rz;
2017-11-11 03:37:41 +01:00
prepare_uninterpolated_move_to_destination(z_feedrate);
2016-09-15 20:21:59 +02:00
}
2017-11-03 02:17:51 +01:00
destination[X_AXIS] = rx;
destination[Y_AXIS] = ry;
2016-09-21 23:47:12 +02:00
prepare_uninterpolated_move_to_destination(fr_mm_s ? fr_mm_s : XY_PROBE_FEEDRATE_MM_S);
2016-09-15 20:21:59 +02:00
// If Z needs to lower, do it after moving XY
2017-11-03 02:17:51 +01:00
if (destination[Z_AXIS] > rz) {
destination[Z_AXIS] = rz;
2017-11-11 03:37:41 +01:00
prepare_uninterpolated_move_to_destination(z_feedrate);
2016-09-15 20:21:59 +02:00
}
#else
// If Z needs to raise, do it before moving XY
2017-11-03 02:17:51 +01:00
if (current_position[Z_AXIS] < rz) {
2017-11-11 03:37:41 +01:00
feedrate_mm_s = z_feedrate;
2017-11-03 02:17:51 +01:00
current_position[Z_AXIS] = rz;
2017-11-09 04:28:11 +01:00
buffer_line_to_current_position();
}
2016-09-21 23:47:12 +02:00
feedrate_mm_s = fr_mm_s ? fr_mm_s : XY_PROBE_FEEDRATE_MM_S;
2017-11-03 02:17:51 +01:00
current_position[X_AXIS] = rx;
current_position[Y_AXIS] = ry;
2017-11-09 04:28:11 +01:00
buffer_line_to_current_position();
// If Z needs to lower, do it after moving XY
2017-11-03 02:17:51 +01:00
if (current_position[Z_AXIS] > rz) {
2017-11-11 03:37:41 +01:00
feedrate_mm_s = z_feedrate;
2017-11-03 02:17:51 +01:00
current_position[Z_AXIS] = rz;
2017-11-09 04:28:11 +01:00
buffer_line_to_current_position();
}
#endif
planner.synchronize();
feedrate_mm_s = old_feedrate_mm_s;
2016-09-22 00:27:37 +02:00
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< do_blocking_move_to");
#endif
}
2017-11-03 02:17:51 +01:00
void do_blocking_move_to_x(const float &rx, const float &fr_mm_s/*=0.0*/) {
do_blocking_move_to(rx, current_position[Y_AXIS], current_position[Z_AXIS], fr_mm_s);
}
2017-11-03 02:17:51 +01:00
void do_blocking_move_to_z(const float &rz, const float &fr_mm_s/*=0.0*/) {
do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], rz, fr_mm_s);
}
2017-11-03 02:17:51 +01:00
void do_blocking_move_to_xy(const float &rx, const float &ry, const float &fr_mm_s/*=0.0*/) {
do_blocking_move_to(rx, ry, current_position[Z_AXIS], fr_mm_s);
}
//
// Prepare to do endstop or probe moves
// with custom feedrates.
//
// - Save current feedrates
// - Reset the rate multiplier
// - Reset the command timeout
// - Enable the endstops (for endstop moves)
//
void setup_for_endstop_or_probe_move() {
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) DEBUG_POS("setup_for_endstop_or_probe_move", current_position);
#endif
saved_feedrate_mm_s = feedrate_mm_s;
2016-07-16 03:49:34 +02:00
saved_feedrate_percentage = feedrate_percentage;
feedrate_percentage = 100;
}
void clean_up_after_endstop_or_probe_move() {
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) DEBUG_POS("clean_up_after_endstop_or_probe_move", current_position);
#endif
feedrate_mm_s = saved_feedrate_mm_s;
2016-07-16 03:49:34 +02:00
feedrate_percentage = saved_feedrate_percentage;
}
2017-09-24 22:05:27 +02:00
#if HAS_AXIS_UNHOMED_ERR
2017-04-29 00:17:01 +02:00
2017-05-14 22:57:37 +02:00
bool axis_unhomed_error(const bool x/*=true*/, const bool y/*=true*/, const bool z/*=true*/) {
2017-05-29 19:52:56 +02:00
#if ENABLED(HOME_AFTER_DEACTIVATE)
2018-06-12 04:42:39 +02:00
const bool xx = x && !TEST(axis_known_position, X_AXIS),
yy = y && !TEST(axis_known_position, Y_AXIS),
zz = z && !TEST(axis_known_position, Z_AXIS);
2017-05-29 19:52:56 +02:00
#else
2018-06-12 04:42:39 +02:00
const bool xx = x && !TEST(axis_homed, X_AXIS),
yy = y && !TEST(axis_homed, Y_AXIS),
zz = z && !TEST(axis_homed, Z_AXIS);
2017-05-29 19:52:56 +02:00
#endif
2016-07-16 12:57:35 +02:00
if (xx || yy || zz) {
2017-06-09 17:51:23 +02:00
SERIAL_ECHO_START();
2016-07-16 12:57:35 +02:00
SERIAL_ECHOPGM(MSG_HOME " ");
if (xx) SERIAL_ECHOPGM(MSG_X);
if (yy) SERIAL_ECHOPGM(MSG_Y);
if (zz) SERIAL_ECHOPGM(MSG_Z);
SERIAL_ECHOLNPGM(" " MSG_FIRST);
#if ENABLED(ULTRA_LCD)
2017-04-02 07:46:37 +02:00
lcd_status_printf_P(0, PSTR(MSG_HOME " %s%s%s " MSG_FIRST), xx ? MSG_X : "", yy ? MSG_Y : "", zz ? MSG_Z : "");
2016-07-16 12:57:35 +02:00
#endif
return true;
}
return false;
2016-06-22 23:03:22 +02:00
}
2017-04-29 00:17:01 +02:00
#endif // HAS_AXIS_UNHOMED_ERR
2016-06-22 23:03:22 +02:00
2016-06-21 00:50:51 +02:00
#if ENABLED(Z_PROBE_SLED)
#ifndef SLED_DOCKING_OFFSET
#define SLED_DOCKING_OFFSET 0
#endif
/**
* Method to dock/undock a sled designed by Charles Bell.
*
* stow[in] If false, move to MAX_X and engage the solenoid
* If true, move to MAX_X and release the solenoid
2016-06-21 00:50:51 +02:00
*/
static void dock_sled(bool stow) {
2016-06-21 00:50:51 +02:00
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) {
SERIAL_ECHOPAIR("dock_sled(", stow);
2016-10-02 08:48:17 +02:00
SERIAL_CHAR(')');
2017-06-09 17:51:23 +02:00
SERIAL_EOL();
2016-06-21 00:50:51 +02:00
}
#endif
// Dock sled a bit closer to ensure proper capturing
do_blocking_move_to_x(X_MAX_POS + SLED_DOCKING_OFFSET - ((stow) ? 1 : 0));
2017-04-14 23:36:02 +02:00
#if HAS_SOLENOID_1 && DISABLED(EXT_SOLENOID)
WRITE(SOL1_PIN, !stow); // switch solenoid
2016-07-30 11:01:46 +02:00
#endif
2016-06-21 00:50:51 +02:00
}
2016-10-03 01:18:05 +02:00
#elif ENABLED(Z_PROBE_ALLEN_KEY)
2017-12-09 12:11:22 +01:00
FORCE_INLINE void do_blocking_move_to(const float (&raw)[XYZ], const float &fr_mm_s) {
2017-11-03 02:17:51 +01:00
do_blocking_move_to(raw[X_AXIS], raw[Y_AXIS], raw[Z_AXIS], fr_mm_s);
2017-06-07 14:12:19 +02:00
}
void run_deploy_moves_script() {
#if defined(Z_PROBE_ALLEN_KEY_DEPLOY_1_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_1_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_1_Z)
#ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_X
#define Z_PROBE_ALLEN_KEY_DEPLOY_1_X current_position[X_AXIS]
#endif
#ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_Y
#define Z_PROBE_ALLEN_KEY_DEPLOY_1_Y current_position[Y_AXIS]
#endif
#ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_Z
#define Z_PROBE_ALLEN_KEY_DEPLOY_1_Z current_position[Z_AXIS]
#endif
#ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE
#define Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE 0.0
#endif
2017-06-07 14:12:19 +02:00
const float deploy_1[] = { Z_PROBE_ALLEN_KEY_DEPLOY_1_X, Z_PROBE_ALLEN_KEY_DEPLOY_1_Y, Z_PROBE_ALLEN_KEY_DEPLOY_1_Z };
do_blocking_move_to(deploy_1, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE));
#endif
#if defined(Z_PROBE_ALLEN_KEY_DEPLOY_2_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_2_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_2_Z)
#ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_X
#define Z_PROBE_ALLEN_KEY_DEPLOY_2_X current_position[X_AXIS]
#endif
#ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_Y
#define Z_PROBE_ALLEN_KEY_DEPLOY_2_Y current_position[Y_AXIS]
#endif
#ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_Z
#define Z_PROBE_ALLEN_KEY_DEPLOY_2_Z current_position[Z_AXIS]
#endif
#ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE
#define Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE 0.0
#endif
2017-06-07 14:12:19 +02:00
const float deploy_2[] = { Z_PROBE_ALLEN_KEY_DEPLOY_2_X, Z_PROBE_ALLEN_KEY_DEPLOY_2_Y, Z_PROBE_ALLEN_KEY_DEPLOY_2_Z };
do_blocking_move_to(deploy_2, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE));
#endif
#if defined(Z_PROBE_ALLEN_KEY_DEPLOY_3_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_3_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_3_Z)
#ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_X
#define Z_PROBE_ALLEN_KEY_DEPLOY_3_X current_position[X_AXIS]
#endif
#ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_Y
#define Z_PROBE_ALLEN_KEY_DEPLOY_3_Y current_position[Y_AXIS]
#endif
#ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_Z
#define Z_PROBE_ALLEN_KEY_DEPLOY_3_Z current_position[Z_AXIS]
#endif
#ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE
#define Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE 0.0
#endif
2017-06-07 14:12:19 +02:00
const float deploy_3[] = { Z_PROBE_ALLEN_KEY_DEPLOY_3_X, Z_PROBE_ALLEN_KEY_DEPLOY_3_Y, Z_PROBE_ALLEN_KEY_DEPLOY_3_Z };
do_blocking_move_to(deploy_3, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE));
#endif
#if defined(Z_PROBE_ALLEN_KEY_DEPLOY_4_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_4_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_4_Z)
#ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_X
#define Z_PROBE_ALLEN_KEY_DEPLOY_4_X current_position[X_AXIS]
#endif
#ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_Y
#define Z_PROBE_ALLEN_KEY_DEPLOY_4_Y current_position[Y_AXIS]
#endif
#ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_Z
#define Z_PROBE_ALLEN_KEY_DEPLOY_4_Z current_position[Z_AXIS]
#endif
#ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_FEEDRATE
#define Z_PROBE_ALLEN_KEY_DEPLOY_4_FEEDRATE 0.0
#endif
2017-06-07 14:12:19 +02:00
const float deploy_4[] = { Z_PROBE_ALLEN_KEY_DEPLOY_4_X, Z_PROBE_ALLEN_KEY_DEPLOY_4_Y, Z_PROBE_ALLEN_KEY_DEPLOY_4_Z };
do_blocking_move_to(deploy_4, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_4_FEEDRATE));
#endif
#if defined(Z_PROBE_ALLEN_KEY_DEPLOY_5_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_5_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_5_Z)
#ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_X
#define Z_PROBE_ALLEN_KEY_DEPLOY_5_X current_position[X_AXIS]
#endif
#ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_Y
#define Z_PROBE_ALLEN_KEY_DEPLOY_5_Y current_position[Y_AXIS]
#endif
#ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_Z
#define Z_PROBE_ALLEN_KEY_DEPLOY_5_Z current_position[Z_AXIS]
#endif
#ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_FEEDRATE
#define Z_PROBE_ALLEN_KEY_DEPLOY_5_FEEDRATE 0.0
#endif
2017-06-07 14:12:19 +02:00
const float deploy_5[] = { Z_PROBE_ALLEN_KEY_DEPLOY_5_X, Z_PROBE_ALLEN_KEY_DEPLOY_5_Y, Z_PROBE_ALLEN_KEY_DEPLOY_5_Z };
do_blocking_move_to(deploy_5, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_5_FEEDRATE));
#endif
}
2016-10-03 01:18:05 +02:00
void run_stow_moves_script() {
#if defined(Z_PROBE_ALLEN_KEY_STOW_1_X) || defined(Z_PROBE_ALLEN_KEY_STOW_1_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_1_Z)
#ifndef Z_PROBE_ALLEN_KEY_STOW_1_X
#define Z_PROBE_ALLEN_KEY_STOW_1_X current_position[X_AXIS]
#endif
#ifndef Z_PROBE_ALLEN_KEY_STOW_1_Y
#define Z_PROBE_ALLEN_KEY_STOW_1_Y current_position[Y_AXIS]
#endif
#ifndef Z_PROBE_ALLEN_KEY_STOW_1_Z
#define Z_PROBE_ALLEN_KEY_STOW_1_Z current_position[Z_AXIS]
#endif
#ifndef Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE
#define Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE 0.0
#endif
2017-06-07 14:12:19 +02:00
const float stow_1[] = { Z_PROBE_ALLEN_KEY_STOW_1_X, Z_PROBE_ALLEN_KEY_STOW_1_Y, Z_PROBE_ALLEN_KEY_STOW_1_Z };
do_blocking_move_to(stow_1, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE));
#endif
#if defined(Z_PROBE_ALLEN_KEY_STOW_2_X) || defined(Z_PROBE_ALLEN_KEY_STOW_2_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_2_Z)
#ifndef Z_PROBE_ALLEN_KEY_STOW_2_X
#define Z_PROBE_ALLEN_KEY_STOW_2_X current_position[X_AXIS]
#endif
#ifndef Z_PROBE_ALLEN_KEY_STOW_2_Y
#define Z_PROBE_ALLEN_KEY_STOW_2_Y current_position[Y_AXIS]
#endif
#ifndef Z_PROBE_ALLEN_KEY_STOW_2_Z
#define Z_PROBE_ALLEN_KEY_STOW_2_Z current_position[Z_AXIS]
#endif
#ifndef Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE
#define Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE 0.0
#endif
2017-06-07 14:12:19 +02:00
const float stow_2[] = { Z_PROBE_ALLEN_KEY_STOW_2_X, Z_PROBE_ALLEN_KEY_STOW_2_Y, Z_PROBE_ALLEN_KEY_STOW_2_Z };
do_blocking_move_to(stow_2, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE));
#endif
#if defined(Z_PROBE_ALLEN_KEY_STOW_3_X) || defined(Z_PROBE_ALLEN_KEY_STOW_3_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_3_Z)
#ifndef Z_PROBE_ALLEN_KEY_STOW_3_X
#define Z_PROBE_ALLEN_KEY_STOW_3_X current_position[X_AXIS]
#endif
#ifndef Z_PROBE_ALLEN_KEY_STOW_3_Y
#define Z_PROBE_ALLEN_KEY_STOW_3_Y current_position[Y_AXIS]
#endif
#ifndef Z_PROBE_ALLEN_KEY_STOW_3_Z
#define Z_PROBE_ALLEN_KEY_STOW_3_Z current_position[Z_AXIS]
#endif
#ifndef Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE
#define Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE 0.0
#endif
2017-06-07 14:12:19 +02:00
const float stow_3[] = { Z_PROBE_ALLEN_KEY_STOW_3_X, Z_PROBE_ALLEN_KEY_STOW_3_Y, Z_PROBE_ALLEN_KEY_STOW_3_Z };
do_blocking_move_to(stow_3, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE));
#endif
#if defined(Z_PROBE_ALLEN_KEY_STOW_4_X) || defined(Z_PROBE_ALLEN_KEY_STOW_4_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_4_Z)
#ifndef Z_PROBE_ALLEN_KEY_STOW_4_X
#define Z_PROBE_ALLEN_KEY_STOW_4_X current_position[X_AXIS]
#endif
#ifndef Z_PROBE_ALLEN_KEY_STOW_4_Y
#define Z_PROBE_ALLEN_KEY_STOW_4_Y current_position[Y_AXIS]
#endif
#ifndef Z_PROBE_ALLEN_KEY_STOW_4_Z
#define Z_PROBE_ALLEN_KEY_STOW_4_Z current_position[Z_AXIS]
#endif
#ifndef Z_PROBE_ALLEN_KEY_STOW_4_FEEDRATE
#define Z_PROBE_ALLEN_KEY_STOW_4_FEEDRATE 0.0
#endif
2017-06-07 14:12:19 +02:00
const float stow_4[] = { Z_PROBE_ALLEN_KEY_STOW_4_X, Z_PROBE_ALLEN_KEY_STOW_4_Y, Z_PROBE_ALLEN_KEY_STOW_4_Z };
do_blocking_move_to(stow_4, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_4_FEEDRATE));
#endif
#if defined(Z_PROBE_ALLEN_KEY_STOW_5_X) || defined(Z_PROBE_ALLEN_KEY_STOW_5_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_5_Z)
#ifndef Z_PROBE_ALLEN_KEY_STOW_5_X
#define Z_PROBE_ALLEN_KEY_STOW_5_X current_position[X_AXIS]
#endif
#ifndef Z_PROBE_ALLEN_KEY_STOW_5_Y
#define Z_PROBE_ALLEN_KEY_STOW_5_Y current_position[Y_AXIS]
#endif
#ifndef Z_PROBE_ALLEN_KEY_STOW_5_Z
#define Z_PROBE_ALLEN_KEY_STOW_5_Z current_position[Z_AXIS]
#endif
#ifndef Z_PROBE_ALLEN_KEY_STOW_5_FEEDRATE
#define Z_PROBE_ALLEN_KEY_STOW_5_FEEDRATE 0.0
#endif
2017-06-07 14:12:19 +02:00
const float stow_5[] = { Z_PROBE_ALLEN_KEY_STOW_5_X, Z_PROBE_ALLEN_KEY_STOW_5_Y, Z_PROBE_ALLEN_KEY_STOW_5_Z };
do_blocking_move_to(stow_5, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_5_FEEDRATE));
#endif
}
2016-10-03 01:18:05 +02:00
#endif // Z_PROBE_ALLEN_KEY
2016-06-21 00:50:51 +02:00
#if ENABLED(PROBING_FANS_OFF)
2017-05-08 21:09:37 +02:00
void fans_pause(const bool p) {
if (p != fans_paused) {
fans_paused = p;
if (p)
for (uint8_t x = 0; x < FAN_COUNT; x++) {
paused_fanSpeeds[x] = fanSpeeds[x];
fanSpeeds[x] = 0;
}
else
for (uint8_t x = 0; x < FAN_COUNT; x++)
fanSpeeds[x] = paused_fanSpeeds[x];
}
}
2017-05-08 21:09:37 +02:00
#endif // PROBING_FANS_OFF
#if HAS_BED_PROBE
2017-04-08 08:53:22 +02:00
// TRIGGERED_WHEN_STOWED_TEST can easily be extended to servo probes, ... if needed.
#if ENABLED(PROBE_IS_TRIGGERED_WHEN_STOWED_TEST)
#if ENABLED(Z_MIN_PROBE_ENDSTOP)
#define _TRIGGERED_WHEN_STOWED_TEST (READ(Z_MIN_PROBE_PIN) != Z_MIN_PROBE_ENDSTOP_INVERTING)
#else
#define _TRIGGERED_WHEN_STOWED_TEST (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING)
#endif
#endif
#if QUIET_PROBING
2017-05-08 21:09:37 +02:00
void probing_pause(const bool p) {
#if ENABLED(PROBING_HEATERS_OFF)
2017-05-08 21:09:37 +02:00
thermalManager.pause(p);
#endif
#if ENABLED(PROBING_FANS_OFF)
2017-05-08 21:09:37 +02:00
fans_pause(p);
#endif
if (p) safe_delay(
#if DELAY_BEFORE_PROBING > 25
DELAY_BEFORE_PROBING
#else
25
#endif
);
}
2017-05-08 21:09:37 +02:00
#endif // QUIET_PROBING
#if ENABLED(BLTOUCH)
2017-04-29 01:22:31 +02:00
void bltouch_command(int angle) {
2018-04-02 06:51:12 +02:00
MOVE_SERVO(Z_PROBE_SERVO_NR, angle); // Give the BL-Touch the command and wait
safe_delay(BLTOUCH_DELAY);
}
bool set_bltouch_deployed(const bool deploy) {
if (deploy && TEST_BLTOUCH()) { // If BL-Touch says it's triggered
bltouch_command(BLTOUCH_RESET); // try to reset it.
bltouch_command(BLTOUCH_DEPLOY); // Also needs to deploy and stow to
bltouch_command(BLTOUCH_STOW); // clear the triggered condition.
safe_delay(1500); // Wait for internal self-test to complete.
// (Measured completion time was 0.65 seconds
// after reset, deploy, and stow sequence)
if (TEST_BLTOUCH()) { // If it still claims to be triggered...
2017-06-09 17:51:23 +02:00
SERIAL_ERROR_START();
SERIAL_ERRORLNPGM(MSG_STOP_BLTOUCH);
stop(); // punt!
return true;
}
}
2017-05-01 23:10:39 +02:00
bltouch_command(deploy ? BLTOUCH_DEPLOY : BLTOUCH_STOW);
2017-05-01 23:10:39 +02:00
2016-10-02 08:48:17 +02:00
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) {
SERIAL_ECHOPAIR("set_bltouch_deployed(", deploy);
SERIAL_CHAR(')');
2017-06-09 17:51:23 +02:00
SERIAL_EOL();
2016-10-02 08:48:17 +02:00
}
#endif
return false;
}
2017-04-29 01:22:31 +02:00
#endif // BLTOUCH
/**
* Raise Z to a minimum height to make room for a probe to move
*/
inline void do_probe_raise(const float z_raise) {
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) {
SERIAL_ECHOPAIR("do_probe_raise(", z_raise);
SERIAL_CHAR(')');
SERIAL_EOL();
}
#endif
float z_dest = z_raise;
if (zprobe_zoffset < 0) z_dest -= zprobe_zoffset;
NOMORE(z_dest, Z_MAX_POS);
if (z_dest > current_position[Z_AXIS])
do_blocking_move_to_z(z_dest);
}
// returns false for ok and true for failure
bool set_probe_deployed(const bool deploy) {
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) {
DEBUG_POS("set_probe_deployed", current_position);
SERIAL_ECHOLNPAIR("deploy: ", deploy);
}
#endif
if (endstops.z_probe_enabled == deploy) return false;
// Make room for probe to deploy (or stow)
2018-02-24 23:12:51 +01:00
// Fix-mounted probe should only raise for deploy
#if ENABLED(FIX_MOUNTED_PROBE)
const bool deploy_stow_condition = deploy;
#else
constexpr bool deploy_stow_condition = true;
#endif
// For beds that fall when Z is powered off only raise for trusted Z
#if ENABLED(UNKNOWN_Z_NO_RAISE)
2018-06-12 04:42:39 +02:00
const bool unknown_condition = TEST(axis_known_position, Z_AXIS);
#else
constexpr float unknown_condition = true;
#endif
if (deploy_stow_condition && unknown_condition)
do_probe_raise(MAX(Z_CLEARANCE_BETWEEN_PROBES, Z_CLEARANCE_DEPLOY_PROBE));
#if ENABLED(Z_PROBE_SLED) || ENABLED(Z_PROBE_ALLEN_KEY)
2017-05-14 22:57:37 +02:00
#if ENABLED(Z_PROBE_SLED)
#define _AUE_ARGS true, false, false
#else
#define _AUE_ARGS
#endif
if (axis_unhomed_error(_AUE_ARGS)) {
2017-06-09 17:51:23 +02:00
SERIAL_ERROR_START();
SERIAL_ERRORLNPGM(MSG_STOP_UNHOMED);
stop();
return true;
}
#endif
const float oldXpos = current_position[X_AXIS],
oldYpos = current_position[Y_AXIS];
#ifdef _TRIGGERED_WHEN_STOWED_TEST
2016-08-06 23:24:05 +02:00
// If endstop is already false, the Z probe is deployed
2016-08-06 23:24:05 +02:00
if (_TRIGGERED_WHEN_STOWED_TEST == deploy) { // closed after the probe specific actions.
// Would a goto be less ugly?
//while (!_TRIGGERED_WHEN_STOWED_TEST) idle(); // would offer the opportunity
// for a triggered when stowed manual probe.
2016-08-06 23:24:05 +02:00
if (!deploy) endstops.enable_z_probe(false); // Switch off triggered when stowed probes early
// otherwise an Allen-Key probe can't be stowed.
#endif
2017-04-14 23:36:02 +02:00
#if ENABLED(SOLENOID_PROBE)
#if HAS_SOLENOID_1
WRITE(SOL1_PIN, deploy);
#endif
#elif ENABLED(Z_PROBE_SLED)
2016-08-06 23:24:05 +02:00
dock_sled(!deploy);
2018-04-02 06:51:12 +02:00
#elif HAS_Z_SERVO_PROBE && DISABLED(BLTOUCH)
2016-08-06 23:24:05 +02:00
2018-04-02 06:51:12 +02:00
MOVE_SERVO(Z_PROBE_SERVO_NR, z_servo_angle[deploy ? 0 : 1]);
2016-08-06 23:24:05 +02:00
#elif ENABLED(Z_PROBE_ALLEN_KEY)
deploy ? run_deploy_moves_script() : run_stow_moves_script();
#endif
#ifdef _TRIGGERED_WHEN_STOWED_TEST
2016-08-06 23:24:05 +02:00
} // _TRIGGERED_WHEN_STOWED_TEST == deploy
if (_TRIGGERED_WHEN_STOWED_TEST == deploy) { // State hasn't changed?
if (IsRunning()) {
2017-06-09 17:51:23 +02:00
SERIAL_ERROR_START();
SERIAL_ERRORLNPGM("Z-Probe failed");
LCD_ALERTMESSAGEPGM("Err: ZPROBE");
}
stop();
return true;
2016-08-06 23:24:05 +02:00
} // _TRIGGERED_WHEN_STOWED_TEST == deploy
#endif
do_blocking_move_to(oldXpos, oldYpos, current_position[Z_AXIS]); // return to position before deploy
2016-08-28 02:53:02 +02:00
endstops.enable_z_probe(deploy);
return false;
}
/**
* @brief Used by run_z_probe to do a single Z probe move.
*
* @param z Z destination
* @param fr_mm_s Feedrate in mm/s
* @return true to indicate an error
*/
2018-04-30 10:00:04 +02:00
static bool do_probe_move(const float z, const float fr_mm_s) {
2016-08-19 08:10:41 +02:00
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) DEBUG_POS(">>> do_probe_move", current_position);
#endif
#if HAS_HEATED_BED && ENABLED(WAIT_FOR_BED_HEATER)
// Wait for bed to heat back up between probing points
if (thermalManager.isHeatingBed()) {
serialprintPGM(msg_wait_for_bed_heating);
LCD_MESSAGEPGM(MSG_BED_HEATING);
while (thermalManager.isHeatingBed()) safe_delay(200);
lcd_reset_status();
}
2018-04-28 18:24:58 +02:00
#endif
// Deploy BLTouch at the start of any probe
#if ENABLED(BLTOUCH)
if (set_bltouch_deployed(true)) return true;
#endif
#if QUIET_PROBING
probing_pause(true);
#endif
2016-08-19 08:10:41 +02:00
// Move down until probe triggered
2018-04-30 10:00:04 +02:00
do_blocking_move_to_z(z, fr_mm_s);
// Check to see if the probe was triggered
const bool probe_triggered = TEST(endstops.trigger_state(),
#if ENABLED(Z_MIN_PROBE_USES_Z_MIN_ENDSTOP_PIN)
Z_MIN
#else
Z_MIN_PROBE
#endif
);
2016-08-19 08:10:41 +02:00
#if QUIET_PROBING
probing_pause(false);
#endif
// Retract BLTouch immediately after a probe if it was triggered
#if ENABLED(BLTOUCH)
if (probe_triggered && set_bltouch_deployed(false)) return true;
#endif
2016-08-19 08:10:41 +02:00
endstops.hit_on_purpose();
// Get Z where the steppers were interrupted
set_current_from_steppers_for_axis(Z_AXIS);
// Tell the planner where we actually are
SYNC_PLAN_POSITION_KINEMATIC();
2016-08-19 08:10:41 +02:00
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) DEBUG_POS("<<< do_probe_move", current_position);
#endif
return !probe_triggered;
2016-08-19 08:10:41 +02:00
}
/**
2017-03-13 05:33:59 +01:00
* @details Used by probe_pt to do a single Z probe at the current position.
* Leaves current_position[Z_AXIS] at the height where the probe triggered.
*
* @return The raw Z position where the probe was triggered
*/
2017-11-08 09:43:29 +01:00
static float run_z_probe() {
2016-08-19 08:09:03 +02:00
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) DEBUG_POS(">>> run_z_probe", current_position);
#endif
// Stop the probe before it goes too low to prevent damage.
// If Z isn't known then probe to -10mm.
2018-06-12 04:42:39 +02:00
const float z_probe_low_point = TEST(axis_known_position, Z_AXIS) ? -zprobe_zoffset + Z_PROBE_LOW_POINT : -10.0;
2017-03-13 05:33:59 +01:00
// Double-probing does a fast probe followed by a slow probe
#if MULTIPLE_PROBING == 2
double bump probing as a feature Why double touch probing is not a good thing. It's widely believed we can get better __probing__ results when using a double touch when probing. Let's compare to double touch __homing__. Or better let's begin with single touch __homing__. We home to find out out position, so our position is unknown. To find the endstop we have to move into the direction of the endstop. The maximum way we have to move is a bit longer than the axis length. When we arrive at the endstop - when it triggers, the stepper pulses are stopped immediately. It's a sudden stop. No smooth deacceleration is possible. Depending on the speed and the moving mass we lose steps here. Only if we approached slow enough (below jerk speed?) we will not lose steps. Moving a complete axis length, that slow, takes for ever. To speed up homing, we now make the first approach faster, get a guess about our position, back up a bit and make a second slower approach to get a exact result without losing steps. What we do in double touch probing is the same. But the difference here is: a. we already know where we are b. if the first approach is to fast we will lose steps here to. But this time there is no second approach to set the position to 0. We are measuring only. The lost steps are permanent until we home the next time. So if you experienced permanently rising values in M48 you now know why. (Too fast, suddenly stopped, first approach) What can we do to improve probing? We can use the information about our current position. We can make a really fast, but deaccelerated, move to a place we know it is a bit before the trigger point. And then move the rest of the way really slow.
2016-07-30 03:00:49 +02:00
2016-08-19 08:10:41 +02:00
// Do a first probe at the fast speed
2018-05-30 00:56:46 +02:00
if (do_probe_move(z_probe_low_point, MMM_TO_MMS(Z_PROBE_SPEED_FAST))) {
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) {
SERIAL_ECHOLNPGM("FAST Probe fail!");
DEBUG_POS("<<< run_z_probe", current_position);
}
#endif
return NAN;
}
2016-08-19 08:10:41 +02:00
2017-12-08 10:48:24 +01:00
float first_probe_z = current_position[Z_AXIS];
2016-09-28 21:01:59 +02:00
#if ENABLED(DEBUG_LEVELING_FEATURE)
2016-10-03 00:35:40 +02:00
if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPAIR("1st Probe Z:", first_probe_z);
2016-09-28 21:01:59 +02:00
#endif
// move up to make clearance for the probe
do_blocking_move_to_z(current_position[Z_AXIS] + Z_CLEARANCE_MULTI_PROBE, MMM_TO_MMS(Z_PROBE_SPEED_FAST));
double bump probing as a feature Why double touch probing is not a good thing. It's widely believed we can get better __probing__ results when using a double touch when probing. Let's compare to double touch __homing__. Or better let's begin with single touch __homing__. We home to find out out position, so our position is unknown. To find the endstop we have to move into the direction of the endstop. The maximum way we have to move is a bit longer than the axis length. When we arrive at the endstop - when it triggers, the stepper pulses are stopped immediately. It's a sudden stop. No smooth deacceleration is possible. Depending on the speed and the moving mass we lose steps here. Only if we approached slow enough (below jerk speed?) we will not lose steps. Moving a complete axis length, that slow, takes for ever. To speed up homing, we now make the first approach faster, get a guess about our position, back up a bit and make a second slower approach to get a exact result without losing steps. What we do in double touch probing is the same. But the difference here is: a. we already know where we are b. if the first approach is to fast we will lose steps here to. But this time there is no second approach to set the position to 0. We are measuring only. The lost steps are permanent until we home the next time. So if you experienced permanently rising values in M48 you now know why. (Too fast, suddenly stopped, first approach) What can we do to improve probing? We can use the information about our current position. We can make a really fast, but deaccelerated, move to a place we know it is a bit before the trigger point. And then move the rest of the way really slow.
2016-07-30 03:00:49 +02:00
#else
// If the nozzle is well over the travel height then
// move down quickly before doing the slow probe
float z = Z_CLEARANCE_DEPLOY_PROBE + 5.0;
if (zprobe_zoffset < 0) z -= zprobe_zoffset;
2017-06-26 12:25:57 +02:00
if (current_position[Z_AXIS] > z) {
// If we don't make it to the z position (i.e. the probe triggered), move up to make clearance for the probe
2018-04-30 10:00:04 +02:00
if (!do_probe_move(z, MMM_TO_MMS(Z_PROBE_SPEED_FAST)))
do_blocking_move_to_z(current_position[Z_AXIS] + Z_CLEARANCE_BETWEEN_PROBES, MMM_TO_MMS(Z_PROBE_SPEED_FAST));
}
double bump probing as a feature Why double touch probing is not a good thing. It's widely believed we can get better __probing__ results when using a double touch when probing. Let's compare to double touch __homing__. Or better let's begin with single touch __homing__. We home to find out out position, so our position is unknown. To find the endstop we have to move into the direction of the endstop. The maximum way we have to move is a bit longer than the axis length. When we arrive at the endstop - when it triggers, the stepper pulses are stopped immediately. It's a sudden stop. No smooth deacceleration is possible. Depending on the speed and the moving mass we lose steps here. Only if we approached slow enough (below jerk speed?) we will not lose steps. Moving a complete axis length, that slow, takes for ever. To speed up homing, we now make the first approach faster, get a guess about our position, back up a bit and make a second slower approach to get a exact result without losing steps. What we do in double touch probing is the same. But the difference here is: a. we already know where we are b. if the first approach is to fast we will lose steps here to. But this time there is no second approach to set the position to 0. We are measuring only. The lost steps are permanent until we home the next time. So if you experienced permanently rising values in M48 you now know why. (Too fast, suddenly stopped, first approach) What can we do to improve probing? We can use the information about our current position. We can make a really fast, but deaccelerated, move to a place we know it is a bit before the trigger point. And then move the rest of the way really slow.
2016-07-30 03:00:49 +02:00
#endif
2017-03-13 05:33:59 +01:00
#if MULTIPLE_PROBING > 2
float probes_total = 0;
for (uint8_t p = MULTIPLE_PROBING + 1; --p;) {
#endif
2016-06-23 01:52:32 +02:00
2017-03-13 05:33:59 +01:00
// move down slowly to find bed
2018-05-30 00:56:46 +02:00
if (do_probe_move(z_probe_low_point, MMM_TO_MMS(Z_PROBE_SPEED_SLOW))) {
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) {
SERIAL_ECHOLNPGM("SLOW Probe fail!");
DEBUG_POS("<<< run_z_probe", current_position);
}
#endif
return NAN;
}
2017-03-13 05:33:59 +01:00
#if MULTIPLE_PROBING > 2
probes_total += current_position[Z_AXIS];
if (p > 1) do_blocking_move_to_z(current_position[Z_AXIS] + Z_CLEARANCE_MULTI_PROBE, MMM_TO_MMS(Z_PROBE_SPEED_FAST));
2016-09-28 21:01:59 +02:00
}
#endif
2017-03-13 05:33:59 +01:00
#if MULTIPLE_PROBING > 2
// Return the average value of all probes
const float measured_z = probes_total * (1.0f / (MULTIPLE_PROBING));
2017-03-13 05:33:59 +01:00
#elif MULTIPLE_PROBING == 2
const float z2 = current_position[Z_AXIS];
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) {
SERIAL_ECHOPAIR("2nd Probe Z:", z2);
SERIAL_ECHOLNPAIR(" Discrepancy:", first_probe_z - z2);
}
#endif
// Return a weighted average of the fast and slow probes
2018-05-30 00:56:46 +02:00
const float measured_z = (z2 * 3.0 + first_probe_z * 2.0) * 0.2;
2017-03-13 05:33:59 +01:00
#else
// Return the single probe result
2018-05-30 00:56:46 +02:00
const float measured_z = current_position[Z_AXIS];
2017-03-13 05:33:59 +01:00
#endif
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) DEBUG_POS("<<< run_z_probe", current_position);
#endif
2018-05-30 00:56:46 +02:00
return measured_z;
}
/**
* - Move to the given XY
* - Deploy the probe, if not already deployed
* - Probe the bed, get the Z position
* - Depending on the 'stow' flag
* - Stow the probe, or
* - Raise to the BETWEEN height
* - Return the probed Z position
*/
float probe_pt(const float &rx, const float &ry, const ProbePtRaise raise_after/*=PROBE_PT_NONE*/, const uint8_t verbose_level/*=0*/, const bool probe_relative/*=true*/) {
2015-08-05 13:40:36 +02:00
#if ENABLED(DEBUG_LEVELING_FEATURE)
2016-03-30 04:50:01 +02:00
if (DEBUGGING(LEVELING)) {
2017-11-03 02:17:51 +01:00
SERIAL_ECHOPAIR(">>> probe_pt(", LOGICAL_X_POSITION(rx));
SERIAL_ECHOPAIR(", ", LOGICAL_Y_POSITION(ry));
SERIAL_ECHOPAIR(", ", raise_after == PROBE_PT_RAISE ? "raise" : raise_after == PROBE_PT_STOW ? "stow" : "none");
SERIAL_ECHOPAIR(", ", int(verbose_level));
SERIAL_ECHOPAIR(", ", probe_relative ? "probe" : "nozzle");
SERIAL_ECHOLNPGM("_relative)");
DEBUG_POS("", current_position);
2015-08-05 13:40:36 +02:00
}
2015-07-10 01:57:44 +02:00
#endif
2017-11-24 14:42:40 +01:00
// TODO: Adapt for SCARA, where the offset rotates
float nx = rx, ny = ry;
if (probe_relative) {
if (!position_is_reachable_by_probe(rx, ry)) return NAN; // The given position is in terms of the probe
nx -= (X_PROBE_OFFSET_FROM_EXTRUDER); // Get the nozzle position
ny -= (Y_PROBE_OFFSET_FROM_EXTRUDER);
}
else if (!position_is_reachable(nx, ny)) return NAN; // The given position is in terms of the nozzle
2017-11-29 00:49:08 +01:00
const float nz =
2017-11-24 23:42:22 +01:00
#if ENABLED(DELTA)
// Move below clip height or xy move will be aborted by do_blocking_move_to
MIN(current_position[Z_AXIS], delta_clip_start_height)
2017-11-24 23:42:22 +01:00
#else
current_position[Z_AXIS]
#endif
;
const float old_feedrate_mm_s = feedrate_mm_s;
feedrate_mm_s = XY_PROBE_FEEDRATE_MM_S;
// Move the probe to the starting XYZ
do_blocking_move_to(nx, ny, nz);
float measured_z = NAN;
if (!DEPLOY_PROBE()) {
2017-11-24 14:42:40 +01:00
measured_z = run_z_probe() + zprobe_zoffset;
const bool big_raise = raise_after == PROBE_PT_BIG_RAISE;
if (big_raise || raise_after == PROBE_PT_RAISE)
do_blocking_move_to_z(current_position[Z_AXIS] + (big_raise ? 25 : Z_CLEARANCE_BETWEEN_PROBES), MMM_TO_MMS(Z_PROBE_SPEED_FAST));
else if (raise_after == PROBE_PT_STOW)
if (STOW_PROBE()) measured_z = NAN;
}
if (verbose_level > 2) {
2015-05-17 10:49:52 +02:00
SERIAL_PROTOCOLPGM("Bed X: ");
2017-11-03 02:17:51 +01:00
SERIAL_PROTOCOL_F(LOGICAL_X_POSITION(rx), 3);
SERIAL_PROTOCOLPGM(" Y: ");
2017-11-03 02:17:51 +01:00
SERIAL_PROTOCOL_F(LOGICAL_Y_POSITION(ry), 3);
SERIAL_PROTOCOLPGM(" Z: ");
SERIAL_PROTOCOL_F(measured_z, 3);
2017-06-09 17:51:23 +02:00
SERIAL_EOL();
}
2015-07-10 01:57:44 +02:00
2017-11-24 23:42:22 +01:00
feedrate_mm_s = old_feedrate_mm_s;
if (isnan(measured_z)) {
LCD_MESSAGEPGM(MSG_ERR_PROBING_FAILED);
SERIAL_ERROR_START();
SERIAL_ERRORLNPGM(MSG_ERR_PROBING_FAILED);
}
2018-05-30 00:56:46 +02:00
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< probe_pt");
#endif
return measured_z;
}
2016-06-24 04:00:29 +02:00
#endif // HAS_BED_PROBE
2016-06-22 23:03:22 +02:00
2017-05-01 23:13:09 +02:00
#if HAS_LEVELING
bool leveling_is_valid() {
return
#if ENABLED(MESH_BED_LEVELING)
2018-01-07 07:06:21 +01:00
mbl.has_mesh()
#elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
!!bilinear_grid_spacing[X_AXIS]
#elif ENABLED(AUTO_BED_LEVELING_UBL)
ubl.mesh_is_valid()
#else // 3POINT, LINEAR
true
#endif
;
}
/**
* Turn bed leveling on or off, fixing the current
* position as-needed.
*
* Disable: Current position = physical position
* Enable: Current position = "unleveled" physical position
*/
void set_bed_leveling_enabled(const bool enable/*=true*/) {
#if ENABLED(AUTO_BED_LEVELING_BILINEAR)
const bool can_change = (!enable || leveling_is_valid());
#else
constexpr bool can_change = true;
#endif
if (can_change && enable != planner.leveling_active) {
planner.synchronize();
#if ENABLED(MESH_BED_LEVELING)
2016-12-05 08:53:36 +01:00
if (!enable)
planner.apply_leveling(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS]);
const bool enabling = enable && leveling_is_valid();
planner.leveling_active = enabling;
if (enabling) planner.unapply_leveling(current_position);
2016-12-05 08:53:36 +01:00
#elif ENABLED(AUTO_BED_LEVELING_UBL)
#if PLANNER_LEVELING
if (planner.leveling_active) { // leveling from on to off
// change unleveled current_position to physical current_position without moving steppers.
2017-05-12 08:05:11 +02:00
planner.apply_leveling(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS]);
planner.leveling_active = false; // disable only AFTER calling apply_leveling
}
2018-01-23 18:32:53 +01:00
else { // leveling from off to on
planner.leveling_active = true; // enable BEFORE calling unapply_leveling, otherwise ignored
// change physical current_position to unleveled current_position without moving steppers.
2017-06-04 18:30:03 +02:00
planner.unapply_leveling(current_position);
}
#else
// UBL equivalents for apply/unapply_leveling
#if ENABLED(SKEW_CORRECTION)
float pos[XYZ] = { current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] };
planner.skew(pos[X_AXIS], pos[Y_AXIS], pos[Z_AXIS]);
#else
const float (&pos)[XYZE] = current_position;
#endif
if (planner.leveling_active) {
2018-04-19 04:43:00 +02:00
current_position[Z_AXIS] += ubl.get_z_correction(pos[X_AXIS], pos[Y_AXIS]);
planner.leveling_active = false;
}
else {
planner.leveling_active = true;
2018-04-19 04:43:00 +02:00
current_position[Z_AXIS] -= ubl.get_z_correction(pos[X_AXIS], pos[Y_AXIS]);
}
#endif
#else // ABL
#if ENABLED(AUTO_BED_LEVELING_BILINEAR)
// Force bilinear_z_offset to re-calculate next time
const float reset[XYZ] = { -9999.999, -9999.999, 0 };
(void)bilinear_z_offset(reset);
#endif
2017-06-04 18:30:03 +02:00
// Enable or disable leveling compensation in the planner
planner.leveling_active = enable;
2017-06-04 18:30:03 +02:00
if (!enable)
2017-06-04 18:30:03 +02:00
// When disabling just get the current position from the steppers.
// This will yield the smallest error when first converted back to steps.
set_current_from_steppers_for_axis(
#if ABL_PLANAR
ALL_AXES
#else
Z_AXIS
#endif
);
else
2017-06-04 18:30:03 +02:00
// When enabling, remove compensation from the current position,
// so compensation will give the right stepper counts.
planner.unapply_leveling(current_position);
2017-12-11 03:49:45 +01:00
SYNC_PLAN_POSITION_KINEMATIC();
2017-06-04 18:30:03 +02:00
#endif // ABL
}
}
2016-11-26 06:32:47 +01:00
#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
void set_z_fade_height(const float zfh, const bool do_report/*=true*/) {
if (planner.z_fade_height == zfh) return;
2017-06-04 18:30:03 +02:00
const bool leveling_was_active = planner.leveling_active;
set_bed_leveling_enabled(false);
planner.set_z_fade_height(zfh);
if (leveling_was_active) {
2017-12-11 03:50:36 +01:00
const float oldpos[] = { current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] };
set_bed_leveling_enabled(true);
2017-12-11 03:49:45 +01:00
if (do_report && memcmp(oldpos, current_position, sizeof(oldpos)))
report_current_position();
}
2016-11-26 06:32:47 +01:00
}
#endif // LEVELING_FADE_HEIGHT
2016-06-22 23:03:22 +02:00
/**
* Reset calibration results to zero.
*/
void reset_bed_level() {
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("reset_bed_level");
#endif
2016-12-10 08:54:09 +01:00
set_bed_leveling_enabled(false);
#if ENABLED(MESH_BED_LEVELING)
2018-01-07 07:06:21 +01:00
mbl.reset();
#elif ENABLED(AUTO_BED_LEVELING_UBL)
ubl.reset();
#elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
bilinear_start[X_AXIS] = bilinear_start[Y_AXIS] =
bilinear_grid_spacing[X_AXIS] = bilinear_grid_spacing[Y_AXIS] = 0;
for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++)
for (uint8_t y = 0; y < GRID_MAX_POINTS_Y; y++)
z_values[x][y] = NAN;
#elif ABL_PLANAR
planner.bed_level_matrix.set_to_identity();
#endif
}
2016-06-22 23:03:22 +02:00
2017-05-01 23:13:09 +02:00
#endif // HAS_LEVELING
#if ENABLED(AUTO_BED_LEVELING_BILINEAR) || ENABLED(MESH_BED_LEVELING)
/**
* Enable to produce output in JSON format suitable
* for SCAD or JavaScript mesh visualizers.
*
* Visualize meshes in OpenSCAD using the included script.
*
* buildroot/shared/scripts/MarlinMesh.scad
*/
//#define SCAD_MESH_OUTPUT
/**
* Print calibration results for plotting or manual frame adjustment.
*/
2018-01-07 07:03:16 +01:00
void print_2d_array(const uint8_t sx, const uint8_t sy, const uint8_t precision, const element_2d_fn fn) {
#ifndef SCAD_MESH_OUTPUT
for (uint8_t x = 0; x < sx; x++) {
for (uint8_t i = 0; i < precision + 2 + (x < 10 ? 1 : 0); i++)
SERIAL_PROTOCOLCHAR(' ');
SERIAL_PROTOCOL(int(x));
}
2017-06-09 17:51:23 +02:00
SERIAL_EOL();
#endif
#ifdef SCAD_MESH_OUTPUT
SERIAL_PROTOCOLLNPGM("measured_z = ["); // open 2D array
#endif
for (uint8_t y = 0; y < sy; y++) {
#ifdef SCAD_MESH_OUTPUT
2017-05-29 22:44:20 +02:00
SERIAL_PROTOCOLPGM(" ["); // open sub-array
#else
if (y < 10) SERIAL_PROTOCOLCHAR(' ');
SERIAL_PROTOCOL(int(y));
#endif
for (uint8_t x = 0; x < sx; x++) {
SERIAL_PROTOCOLCHAR(' ');
const float offset = fn(x, y);
if (!isnan(offset)) {
if (offset >= 0) SERIAL_PROTOCOLCHAR('+');
SERIAL_PROTOCOL_F(offset, int(precision));
}
else {
#ifdef SCAD_MESH_OUTPUT
for (uint8_t i = 3; i < precision + 3; i++)
SERIAL_PROTOCOLCHAR(' ');
SERIAL_PROTOCOLPGM("NAN");
#else
for (uint8_t i = 0; i < precision + 3; i++)
SERIAL_PROTOCOLCHAR(i ? '=' : ' ');
#endif
}
#ifdef SCAD_MESH_OUTPUT
if (x < sx - 1) SERIAL_PROTOCOLCHAR(',');
#endif
}
#ifdef SCAD_MESH_OUTPUT
SERIAL_PROTOCOLCHAR(' ');
SERIAL_PROTOCOLCHAR(']'); // close sub-array
if (y < sy - 1) SERIAL_PROTOCOLCHAR(',');
#endif
2017-06-09 17:51:23 +02:00
SERIAL_EOL();
}
#ifdef SCAD_MESH_OUTPUT
2017-05-29 22:44:20 +02:00
SERIAL_PROTOCOLPGM("];"); // close 2D array
#endif
2017-06-09 17:51:23 +02:00
SERIAL_EOL();
}
#endif
#if ENABLED(AUTO_BED_LEVELING_BILINEAR)
/**
2016-09-15 10:40:34 +02:00
* Extrapolate a single point from its neighbors
*/
2017-05-03 08:47:16 +02:00
static void extrapolate_one_point(const uint8_t x, const uint8_t y, const int8_t xdir, const int8_t ydir) {
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) {
SERIAL_ECHOPGM("Extrapolate [");
if (x < 10) SERIAL_CHAR(' ');
SERIAL_ECHO(int(x));
SERIAL_CHAR(xdir ? (xdir > 0 ? '+' : '-') : ' ');
SERIAL_CHAR(' ');
if (y < 10) SERIAL_CHAR(' ');
SERIAL_ECHO(int(y));
SERIAL_CHAR(ydir ? (ydir > 0 ? '+' : '-') : ' ');
SERIAL_CHAR(']');
}
#endif
if (!isnan(z_values[x][y])) {
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM(" (done)");
#endif
return; // Don't overwrite good values.
}
2017-06-09 17:51:23 +02:00
SERIAL_EOL();
// Get X neighbors, Y neighbors, and XY neighbors
2017-05-03 08:47:16 +02:00
const uint8_t x1 = x + xdir, y1 = y + ydir, x2 = x1 + xdir, y2 = y1 + ydir;
float a1 = z_values[x1][y ], a2 = z_values[x2][y ],
b1 = z_values[x ][y1], b2 = z_values[x ][y2],
c1 = z_values[x1][y1], c2 = z_values[x2][y2];
// Treat far unprobed points as zero, near as equal to far
if (isnan(a2)) a2 = 0.0; if (isnan(a1)) a1 = a2;
if (isnan(b2)) b2 = 0.0; if (isnan(b1)) b1 = b2;
if (isnan(c2)) c2 = 0.0; if (isnan(c1)) c1 = c2;
const float a = 2 * a1 - a2, b = 2 * b1 - b2, c = 2 * c1 - c2;
// Take the average instead of the median
z_values[x][y] = (a + b + c) / 3.0;
// Median is robust (ignores outliers).
// z_values[x][y] = (a < b) ? ((b < c) ? b : (c < a) ? a : c)
// : ((c < b) ? b : (a < c) ? a : c);
}
//Enable this if your SCARA uses 180° of total area
//#define EXTRAPOLATE_FROM_EDGE
#if ENABLED(EXTRAPOLATE_FROM_EDGE)
#if GRID_MAX_POINTS_X < GRID_MAX_POINTS_Y
#define HALF_IN_X
#elif GRID_MAX_POINTS_Y < GRID_MAX_POINTS_X
#define HALF_IN_Y
#endif
#endif
/**
* Fill in the unprobed points (corners of circular print surface)
* using linear extrapolation, away from the center.
*/
static void extrapolate_unprobed_bed_level() {
#ifdef HALF_IN_X
2017-05-03 08:47:16 +02:00
constexpr uint8_t ctrx2 = 0, xlen = GRID_MAX_POINTS_X - 1;
#else
2017-05-03 08:47:16 +02:00
constexpr uint8_t ctrx1 = (GRID_MAX_POINTS_X - 1) / 2, // left-of-center
ctrx2 = (GRID_MAX_POINTS_X) / 2, // right-of-center
xlen = ctrx1;
#endif
#ifdef HALF_IN_Y
2017-05-03 08:47:16 +02:00
constexpr uint8_t ctry2 = 0, ylen = GRID_MAX_POINTS_Y - 1;
#else
2017-05-03 08:47:16 +02:00
constexpr uint8_t ctry1 = (GRID_MAX_POINTS_Y - 1) / 2, // top-of-center
ctry2 = (GRID_MAX_POINTS_Y) / 2, // bottom-of-center
ylen = ctry1;
#endif
for (uint8_t xo = 0; xo <= xlen; xo++)
for (uint8_t yo = 0; yo <= ylen; yo++) {
uint8_t x2 = ctrx2 + xo, y2 = ctry2 + yo;
#ifndef HALF_IN_X
const uint8_t x1 = ctrx1 - xo;
#endif
#ifndef HALF_IN_Y
const uint8_t y1 = ctry1 - yo;
#ifndef HALF_IN_X
extrapolate_one_point(x1, y1, +1, +1); // left-below + +
#endif
extrapolate_one_point(x2, y1, -1, +1); // right-below - +
#endif
#ifndef HALF_IN_X
extrapolate_one_point(x1, y2, +1, -1); // left-above + -
#endif
extrapolate_one_point(x2, y2, -1, -1); // right-above - -
}
}
static void print_bilinear_leveling_grid() {
SERIAL_ECHOLNPGM("Bilinear Leveling Grid:");
print_2d_array(GRID_MAX_POINTS_X, GRID_MAX_POINTS_Y, 3,
[](const uint8_t ix, const uint8_t iy) { return z_values[ix][iy]; }
);
}
#if ENABLED(ABL_BILINEAR_SUBDIVISION)
#define ABL_GRID_POINTS_VIRT_X (GRID_MAX_POINTS_X - 1) * (BILINEAR_SUBDIVISIONS) + 1
#define ABL_GRID_POINTS_VIRT_Y (GRID_MAX_POINTS_Y - 1) * (BILINEAR_SUBDIVISIONS) + 1
#define ABL_TEMP_POINTS_X (GRID_MAX_POINTS_X + 2)
#define ABL_TEMP_POINTS_Y (GRID_MAX_POINTS_Y + 2)
float z_values_virt[ABL_GRID_POINTS_VIRT_X][ABL_GRID_POINTS_VIRT_Y];
int bilinear_grid_spacing_virt[2] = { 0 };
float bilinear_grid_factor_virt[2] = { 0 };
2017-07-24 01:47:11 +02:00
static void print_bilinear_leveling_grid_virt() {
SERIAL_ECHOLNPGM("Subdivided with CATMULL ROM Leveling Grid:");
print_2d_array(ABL_GRID_POINTS_VIRT_X, ABL_GRID_POINTS_VIRT_Y, 5,
[](const uint8_t ix, const uint8_t iy) { return z_values_virt[ix][iy]; }
);
}
#define LINEAR_EXTRAPOLATION(E, I) ((E) * 2 - (I))
float bed_level_virt_coord(const uint8_t x, const uint8_t y) {
uint8_t ep = 0, ip = 1;
if (!x || x == ABL_TEMP_POINTS_X - 1) {
if (x) {
ep = GRID_MAX_POINTS_X - 1;
ip = GRID_MAX_POINTS_X - 2;
}
2017-03-31 16:00:49 +02:00
if (WITHIN(y, 1, ABL_TEMP_POINTS_Y - 2))
return LINEAR_EXTRAPOLATION(
z_values[ep][y - 1],
z_values[ip][y - 1]
);
else
return LINEAR_EXTRAPOLATION(
bed_level_virt_coord(ep + 1, y),
bed_level_virt_coord(ip + 1, y)
);
}
if (!y || y == ABL_TEMP_POINTS_Y - 1) {
if (y) {
ep = GRID_MAX_POINTS_Y - 1;
ip = GRID_MAX_POINTS_Y - 2;
}
2017-03-31 16:00:49 +02:00
if (WITHIN(x, 1, ABL_TEMP_POINTS_X - 2))
return LINEAR_EXTRAPOLATION(
z_values[x - 1][ep],
z_values[x - 1][ip]
);
else
return LINEAR_EXTRAPOLATION(
bed_level_virt_coord(x, ep + 1),
bed_level_virt_coord(x, ip + 1)
);
}
return z_values[x - 1][y - 1];
}
static float bed_level_virt_cmr(const float p[4], const uint8_t i, const float t) {
return (
p[i-1] * -t * sq(1 - t)
+ p[i] * (2 - 5 * sq(t) + 3 * t * sq(t))
+ p[i+1] * t * (1 + 4 * t - 3 * sq(t))
- p[i+2] * sq(t) * (1 - t)
) * 0.5;
}
static float bed_level_virt_2cmr(const uint8_t x, const uint8_t y, const float &tx, const float &ty) {
float row[4], column[4];
for (uint8_t i = 0; i < 4; i++) {
for (uint8_t j = 0; j < 4; j++) {
column[j] = bed_level_virt_coord(i + x - 1, j + y - 1);
}
row[i] = bed_level_virt_cmr(column, 1, ty);
}
return bed_level_virt_cmr(row, 1, tx);
}
2016-12-10 07:17:49 +01:00
void bed_level_virt_interpolate() {
bilinear_grid_spacing_virt[X_AXIS] = bilinear_grid_spacing[X_AXIS] / (BILINEAR_SUBDIVISIONS);
bilinear_grid_spacing_virt[Y_AXIS] = bilinear_grid_spacing[Y_AXIS] / (BILINEAR_SUBDIVISIONS);
bilinear_grid_factor_virt[X_AXIS] = RECIPROCAL(bilinear_grid_spacing_virt[X_AXIS]);
bilinear_grid_factor_virt[Y_AXIS] = RECIPROCAL(bilinear_grid_spacing_virt[Y_AXIS]);
for (uint8_t y = 0; y < GRID_MAX_POINTS_Y; y++)
for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++)
for (uint8_t ty = 0; ty < BILINEAR_SUBDIVISIONS; ty++)
for (uint8_t tx = 0; tx < BILINEAR_SUBDIVISIONS; tx++) {
if ((ty && y == GRID_MAX_POINTS_Y - 1) || (tx && x == GRID_MAX_POINTS_X - 1))
continue;
z_values_virt[x * (BILINEAR_SUBDIVISIONS) + tx][y * (BILINEAR_SUBDIVISIONS) + ty] =
bed_level_virt_2cmr(
x + 1,
y + 1,
(float)tx / (BILINEAR_SUBDIVISIONS),
(float)ty / (BILINEAR_SUBDIVISIONS)
);
}
}
#endif // ABL_BILINEAR_SUBDIVISION
// Refresh after other values have been updated
void refresh_bed_level() {
bilinear_grid_factor[X_AXIS] = RECIPROCAL(bilinear_grid_spacing[X_AXIS]);
bilinear_grid_factor[Y_AXIS] = RECIPROCAL(bilinear_grid_spacing[Y_AXIS]);
#if ENABLED(ABL_BILINEAR_SUBDIVISION)
bed_level_virt_interpolate();
#endif
}
#endif // AUTO_BED_LEVELING_BILINEAR
#if ENABLED(SENSORLESS_HOMING)
/**
* Set sensorless homing if the axis has it, accounting for Core Kinematics.
*/
void sensorless_homing_per_axis(const AxisEnum axis, const bool enable=true) {
switch (axis) {
#if X_SENSORLESS
case X_AXIS:
tmc_sensorless_homing(stepperX, enable);
#if CORE_IS_XY && Y_SENSORLESS
tmc_sensorless_homing(stepperY, enable);
#elif CORE_IS_XZ && Z_SENSORLESS
tmc_sensorless_homing(stepperZ, enable);
#endif
break;
#endif
#if Y_SENSORLESS
case Y_AXIS:
tmc_sensorless_homing(stepperY, enable);
#if CORE_IS_XY && X_SENSORLESS
tmc_sensorless_homing(stepperX, enable);
#elif CORE_IS_YZ && Z_SENSORLESS
tmc_sensorless_homing(stepperZ, enable);
#endif
break;
#endif
#if Z_SENSORLESS
case Z_AXIS:
tmc_sensorless_homing(stepperZ, enable);
#if CORE_IS_XZ && X_SENSORLESS
tmc_sensorless_homing(stepperX, enable);
#elif CORE_IS_YZ && Y_SENSORLESS
tmc_sensorless_homing(stepperY, enable);
#endif
break;
#endif
2018-03-04 10:26:30 +01:00
default: break;
}
}
#endif // SENSORLESS_HOMING
2015-04-01 10:44:13 +02:00
/**
2016-09-15 20:34:24 +02:00
* Home an individual linear axis
2015-04-01 10:44:13 +02:00
*/
static void do_homing_move(const AxisEnum axis, const float distance, const float fr_mm_s=0) {
2016-10-02 08:48:17 +02:00
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) {
SERIAL_ECHOPAIR(">>> do_homing_move(", axis_codes[axis]);
SERIAL_ECHOPAIR(", ", distance);
2018-06-02 23:50:22 +02:00
SERIAL_ECHOPGM(", ");
if (fr_mm_s)
SERIAL_ECHO(fr_mm_s);
else {
SERIAL_ECHOPAIR("[", homing_feedrate(axis));
SERIAL_CHAR(']');
}
SERIAL_ECHOLNPGM(")");
2016-10-02 08:48:17 +02:00
}
#endif
#if HOMING_Z_WITH_PROBE && HAS_HEATED_BED && ENABLED(WAIT_FOR_BED_HEATER)
// Wait for bed to heat back up between probing points
if (axis == Z_AXIS && distance < 0 && thermalManager.isHeatingBed()) {
serialprintPGM(msg_wait_for_bed_heating);
LCD_MESSAGEPGM(MSG_BED_HEATING);
while (thermalManager.isHeatingBed()) safe_delay(200);
lcd_reset_status();
}
#endif
// Only do some things when moving towards an endstop
const int8_t axis_home_dir =
#if ENABLED(DUAL_X_CARRIAGE)
(axis == X_AXIS) ? x_home_dir(active_extruder) :
#endif
home_dir(axis);
const bool is_home_dir = (axis_home_dir > 0) == (distance > 0);
if (is_home_dir) {
#if HOMING_Z_WITH_PROBE && QUIET_PROBING
if (axis == Z_AXIS) probing_pause(true);
#endif
// Disable stealthChop if used. Enable diag1 pin on driver.
#if ENABLED(SENSORLESS_HOMING)
sensorless_homing_per_axis(axis);
#endif
}
2017-11-08 02:03:03 +01:00
// Tell the planner the axis is at 0
2016-08-28 02:53:02 +02:00
current_position[axis] = 0;
2016-09-22 01:35:40 +02:00
// Do the move, which is required to hit an endstop
2016-09-22 01:35:40 +02:00
#if IS_SCARA
SYNC_PLAN_POSITION_KINEMATIC();
current_position[axis] = distance;
inverse_kinematics(current_position);
2018-09-09 04:17:02 +02:00
planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], current_position[E_CART], fr_mm_s ? fr_mm_s : homing_feedrate(axis), active_extruder);
#elif ENABLED(HANGPRINTER) // TODO: Hangprinter homing is not finished (Jan 7, 2018)
SYNC_PLAN_POSITION_KINEMATIC();
current_position[axis] = distance;
inverse_kinematics(current_position);
planner.buffer_line(line_lengths[A_AXIS], line_lengths[B_AXIS], line_lengths[C_AXIS], line_lengths[D_AXIS], current_position[E_CART], fr_mm_s ? fr_mm_s : homing_feedrate(axis), active_extruder);
2016-09-22 01:35:40 +02:00
#else
sync_plan_position();
2018-05-04 03:55:00 +02:00
current_position[axis] = distance; // Set delta/cartesian axes directly
2018-09-09 04:17:02 +02:00
planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_CART], fr_mm_s ? fr_mm_s : homing_feedrate(axis), active_extruder);
2016-09-22 01:35:40 +02:00
#endif
planner.synchronize();
if (is_home_dir) {
#if HOMING_Z_WITH_PROBE && QUIET_PROBING
if (axis == Z_AXIS) probing_pause(false);
#endif
endstops.validate_homing_move();
// Re-enable stealthChop if used. Disable diag1 pin on driver.
#if ENABLED(SENSORLESS_HOMING)
sensorless_homing_per_axis(axis, false);
#endif
}
2016-10-02 08:48:17 +02:00
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) {
SERIAL_ECHOPAIR("<<< do_homing_move(", axis_codes[axis]);
SERIAL_CHAR(')');
2017-06-09 17:51:23 +02:00
SERIAL_EOL();
2016-10-02 08:48:17 +02:00
}
#endif
2016-08-19 08:11:41 +02:00
}
2016-09-15 20:22:23 +02:00
/**
* Home an individual "raw axis" to its endstop.
* This applies to XYZ on Cartesian and Core robots, and
* to the individual ABC steppers on DELTA and SCARA.
*
* At the end of the procedure the axis is marked as
* homed and the current position of that axis is updated.
* Kinematic robots should wait till all axes are homed
* before updating the current position.
*/
static void homeaxis(const AxisEnum axis) {
2016-09-15 22:43:06 +02:00
#if IS_SCARA
// Only Z homing (with probe) is permitted
if (axis != Z_AXIS) { BUZZ(100, 880); return; }
#else
#define CAN_HOME(A) \
2018-05-13 10:25:31 +02:00
(axis == _AXIS(A) && ((A##_MIN_PIN > -1 && A##_HOME_DIR < 0) || (A##_MAX_PIN > -1 && A##_HOME_DIR > 0)))
2016-09-15 22:43:06 +02:00
if (!CAN_HOME(X) && !CAN_HOME(Y) && !CAN_HOME(Z)) return;
#endif
2015-08-05 13:40:36 +02:00
#if ENABLED(DEBUG_LEVELING_FEATURE)
2016-03-30 04:50:01 +02:00
if (DEBUGGING(LEVELING)) {
2016-08-19 08:09:03 +02:00
SERIAL_ECHOPAIR(">>> homeaxis(", axis_codes[axis]);
2016-10-02 08:48:17 +02:00
SERIAL_CHAR(')');
2017-06-09 17:51:23 +02:00
SERIAL_EOL();
2015-08-05 13:40:36 +02:00
}
2015-07-10 01:57:44 +02:00
#endif
2018-06-02 23:50:22 +02:00
const int axis_home_dir = (
#if ENABLED(DUAL_X_CARRIAGE)
2018-06-02 23:50:22 +02:00
axis == X_AXIS ? x_home_dir(active_extruder) :
#endif
2018-06-02 23:50:22 +02:00
home_dir(axis)
);
2016-03-31 02:19:54 +02:00
// Homing Z towards the bed? Deploy the Z probe or endstop.
2016-08-30 20:29:13 +02:00
#if HOMING_Z_WITH_PROBE
2016-09-13 00:49:35 +02:00
if (axis == Z_AXIS && DEPLOY_PROBE()) return;
#endif
// Set flags for X, Y, Z motor locking
2018-06-02 23:50:22 +02:00
#if ENABLED(X_DUAL_ENDSTOPS) || ENABLED(Y_DUAL_ENDSTOPS) || ENABLED(Z_DUAL_ENDSTOPS)
switch (axis) {
#if ENABLED(X_DUAL_ENDSTOPS)
case X_AXIS:
#endif
#if ENABLED(Y_DUAL_ENDSTOPS)
case Y_AXIS:
#endif
#if ENABLED(Z_DUAL_ENDSTOPS)
case Z_AXIS:
#endif
stepper.set_homing_dual_axis(true);
default: break;
}
2017-04-15 05:44:08 +02:00
#endif
// Fast move towards endstop until triggered
2016-10-02 08:48:17 +02:00
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Home 1 Fast:");
#endif
#if HOMING_Z_WITH_PROBE && ENABLED(BLTOUCH)
// BLTOUCH needs to be deployed every time
if (axis == Z_AXIS && set_bltouch_deployed(true)) return;
#endif
do_homing_move(axis, 1.5f * max_length(axis) * axis_home_dir);
#if HOMING_Z_WITH_PROBE && ENABLED(BLTOUCH)
// BLTOUCH needs to be stowed after trigger to rearm itself
if (axis == Z_AXIS) set_bltouch_deployed(false);
#endif
// When homing Z with probe respect probe clearance
const float bump = axis_home_dir * (
#if HOMING_Z_WITH_PROBE
(axis == Z_AXIS && (Z_HOME_BUMP_MM)) ? MAX(Z_CLEARANCE_BETWEEN_PROBES, Z_HOME_BUMP_MM) :
#endif
home_bump_mm(axis)
);
// If a second homing move is configured...
if (bump) {
// Move away from the endstop by the axis HOME_BUMP_MM
2016-10-02 08:48:17 +02:00
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Move Away:");
#endif
2018-04-30 10:00:04 +02:00
do_homing_move(axis, -bump
#if HOMING_Z_WITH_PROBE
2018-05-01 06:44:04 +02:00
, axis == Z_AXIS ? MMM_TO_MMS(Z_PROBE_SPEED_FAST) : 0.00
2018-04-30 10:00:04 +02:00
#endif
);
2016-10-02 08:48:17 +02:00
// Slow move towards endstop until triggered
2016-10-02 08:48:17 +02:00
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Home 2 Slow:");
#endif
#if HOMING_Z_WITH_PROBE && ENABLED(BLTOUCH)
// BLTOUCH needs to be deployed every time
if (axis == Z_AXIS && set_bltouch_deployed(true)) return;
#endif
do_homing_move(axis, 2 * bump, get_homing_bump_feedrate(axis));
#if HOMING_Z_WITH_PROBE && ENABLED(BLTOUCH)
// BLTOUCH needs to be stowed after trigger to rearm itself
if (axis == Z_AXIS) set_bltouch_deployed(false);
#endif
}
2015-07-10 01:57:44 +02:00
/**
* Home axes that have dual endstops... differently
*/
#if ENABLED(X_DUAL_ENDSTOPS) || ENABLED(Y_DUAL_ENDSTOPS) || ENABLED(Z_DUAL_ENDSTOPS)
const bool pos_dir = axis_home_dir > 0;
#if ENABLED(X_DUAL_ENDSTOPS)
if (axis == X_AXIS) {
const float adj = ABS(endstops.x_endstop_adj);
if (adj) {
if (pos_dir ? (endstops.x_endstop_adj > 0) : (endstops.x_endstop_adj < 0)) stepper.set_x_lock(true); else stepper.set_x2_lock(true);
do_homing_move(axis, pos_dir ? -adj : adj);
stepper.set_x_lock(false);
stepper.set_x2_lock(false);
}
}
#endif
#if ENABLED(Y_DUAL_ENDSTOPS)
if (axis == Y_AXIS) {
const float adj = ABS(endstops.y_endstop_adj);
if (adj) {
if (pos_dir ? (endstops.y_endstop_adj > 0) : (endstops.y_endstop_adj < 0)) stepper.set_y_lock(true); else stepper.set_y2_lock(true);
do_homing_move(axis, pos_dir ? -adj : adj);
stepper.set_y_lock(false);
stepper.set_y2_lock(false);
}
}
#endif
#if ENABLED(Z_DUAL_ENDSTOPS)
if (axis == Z_AXIS) {
const float adj = ABS(endstops.z_endstop_adj);
if (adj) {
if (pos_dir ? (endstops.z_endstop_adj > 0) : (endstops.z_endstop_adj < 0)) stepper.set_z_lock(true); else stepper.set_z2_lock(true);
do_homing_move(axis, pos_dir ? -adj : adj);
stepper.set_z_lock(false);
stepper.set_z2_lock(false);
}
}
#endif
2018-06-02 23:50:22 +02:00
stepper.set_homing_dual_axis(false);
#endif
2016-09-15 22:43:06 +02:00
#if IS_SCARA
set_axis_is_at_home(axis);
SYNC_PLAN_POSITION_KINEMATIC();
#elif ENABLED(DELTA)
// Delta has already moved all three towers up in G28
// so here it re-homes each tower in turn.
// Delta homing treats the axes as normal linear axes.
2016-08-28 02:53:02 +02:00
// retrace by the amount specified in delta_endstop_adj + additional dist in order to have minimum steps
if (delta_endstop_adj[axis] * Z_HOME_DIR <= 0) {
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("delta_endstop_adj:");
#endif
do_homing_move(axis, delta_endstop_adj[axis] - (MIN_STEPS_PER_SEGMENT + 1) * planner.steps_to_mm[axis] * Z_HOME_DIR);
}
2016-08-28 02:53:02 +02:00
#else
2015-04-01 10:44:13 +02:00
2016-09-21 23:47:12 +02:00
// For cartesian/core machines,
// set the axis to its home position
2016-08-28 02:53:02 +02:00
set_axis_is_at_home(axis);
sync_plan_position();
2015-07-10 01:57:44 +02:00
2016-08-28 02:53:02 +02:00
destination[axis] = current_position[axis];
2016-08-28 02:53:02 +02:00
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) DEBUG_POS("> AFTER set_axis_is_at_home", current_position);
#endif
#endif
2015-04-29 04:10:07 +02:00
// Put away the Z probe
2016-08-30 08:40:29 +02:00
#if HOMING_Z_WITH_PROBE
2016-09-13 00:49:35 +02:00
if (axis == Z_AXIS && STOW_PROBE()) return;
#endif
2015-07-10 01:57:44 +02:00
// Clear retracted status if homing the Z axis
#if ENABLED(FWRETRACT)
2018-06-02 23:50:22 +02:00
if (axis == Z_AXIS) fwretract.hop_amount = 0.0;
#endif
2015-08-05 13:40:36 +02:00
#if ENABLED(DEBUG_LEVELING_FEATURE)
2016-03-30 04:50:01 +02:00
if (DEBUGGING(LEVELING)) {
2016-08-19 08:09:03 +02:00
SERIAL_ECHOPAIR("<<< homeaxis(", axis_codes[axis]);
2016-10-02 08:48:17 +02:00
SERIAL_CHAR(')');
2017-06-09 17:51:23 +02:00
SERIAL_EOL();
2015-08-05 13:40:36 +02:00
}
2015-07-10 01:57:44 +02:00
#endif
2016-08-19 08:12:41 +02:00
} // homeaxis()
#if ENABLED(MIXING_EXTRUDER)
void normalize_mix() {
float mix_total = 0.0;
for (uint8_t i = 0; i < MIXING_STEPPERS; i++) mix_total += mixing_factor[i];
// Scale all values if they don't add up to ~1.0
if (!NEAR(mix_total, 1.0)) {
SERIAL_PROTOCOLLNPGM("Warning: Mix factors must add up to 1.0. Scaling.");
const float inverse_sum = RECIPROCAL(mix_total);
for (uint8_t i = 0; i < MIXING_STEPPERS; i++) mixing_factor[i] *= inverse_sum;
}
}
#if ENABLED(DIRECT_MIXING_IN_G1)
// Get mixing parameters from the GCode
// The total "must" be 1.0 (but it will be normalized)
// If no mix factors are given, the old mix is preserved
void gcode_get_mix() {
const char mixing_codes[] = { 'A', 'B'
#if MIXING_STEPPERS > 2
, 'C'
#if MIXING_STEPPERS > 3
, 'D'
#if MIXING_STEPPERS > 4
, 'H'
#if MIXING_STEPPERS > 5
, 'I'
#endif // MIXING_STEPPERS > 5
#endif // MIXING_STEPPERS > 4
#endif // MIXING_STEPPERS > 3
#endif // MIXING_STEPPERS > 2
};
byte mix_bits = 0;
for (uint8_t i = 0; i < MIXING_STEPPERS; i++) {
2017-06-27 06:31:45 +02:00
if (parser.seenval(mixing_codes[i])) {
SBI(mix_bits, i);
mixing_factor[i] = MAX(parser.value_float(), 0.0);
}
}
// If any mixing factors were included, clear the rest
// If none were included, preserve the last mix
if (mix_bits) {
for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
if (!TEST(mix_bits, i)) mixing_factor[i] = 0.0;
normalize_mix();
}
}
#endif
#endif
/**
2016-03-27 05:36:36 +02:00
* ***************************************************************************
* ***************************** G-CODE HANDLING *****************************
* ***************************************************************************
*/
/**
* Set XYZE destination and feedrate from the current GCode command
*
* - Set destination from included axis codes
* - Set to current for missing axis codes
* - Set the feedrate, if included
*/
void gcode_get_destination() {
2016-07-23 22:07:23 +02:00
LOOP_XYZE(i) {
2017-11-08 19:50:40 +01:00
if (parser.seen(axis_codes[i])) {
2018-01-20 22:22:38 +01:00
const float v = parser.value_axis_units((AxisEnum)i);
destination[i] = (axis_relative_modes[i] || relative_mode)
? current_position[i] + v
2018-09-09 04:17:02 +02:00
: (i == E_CART) ? v : LOGICAL_TO_NATIVE(v, i);
2017-11-08 19:50:40 +01:00
}
else
destination[i] = current_position[i];
}
if (parser.linearval('F') > 0)
2017-05-20 10:03:08 +02:00
feedrate_mm_s = MMM_TO_MMS(parser.value_feedrate());
#if ENABLED(PRINTCOUNTER)
2016-07-16 03:49:34 +02:00
if (!DEBUGGING(DRYRUN))
2018-09-09 04:17:02 +02:00
print_job_timer.incFilamentUsed(destination[E_CART] - current_position[E_CART]);
#endif
// Get ABCDHI mixing factors
#if ENABLED(MIXING_EXTRUDER) && ENABLED(DIRECT_MIXING_IN_G1)
gcode_get_mix();
#endif
}
#if ENABLED(HOST_KEEPALIVE_FEATURE)
/**
* Output a "busy" message at regular intervals
* while the machine is not accepting commands.
*/
void host_keepalive() {
const millis_t ms = millis();
if (!suspend_auto_report && host_keepalive_interval && busy_state != NOT_BUSY) {
2016-04-11 00:55:12 +02:00
if (PENDING(ms, next_busy_signal_ms)) return;
switch (busy_state) {
case IN_HANDLER:
case IN_PROCESS:
2017-06-09 17:51:23 +02:00
SERIAL_ECHO_START();
SERIAL_ECHOLNPGM(MSG_BUSY_PROCESSING);
break;
case PAUSED_FOR_USER:
2017-06-09 17:51:23 +02:00
SERIAL_ECHO_START();
SERIAL_ECHOLNPGM(MSG_BUSY_PAUSED_FOR_USER);
break;
case PAUSED_FOR_INPUT:
2017-06-09 17:51:23 +02:00
SERIAL_ECHO_START();
SERIAL_ECHOLNPGM(MSG_BUSY_PAUSED_FOR_INPUT);
break;
2016-04-02 23:28:17 +02:00
default:
break;
}
}
2016-04-11 00:55:12 +02:00
next_busy_signal_ms = ms + host_keepalive_interval * 1000UL;
}
2017-05-09 19:35:43 +02:00
#endif // HOST_KEEPALIVE_FEATURE
/**************************************************
***************** GCode Handlers *****************
**************************************************/
#if ENABLED(NO_MOTION_BEFORE_HOMING)
#define G0_G1_CONDITION !axis_unhomed_error(parser.seen('X'), parser.seen('Y'), parser.seen('Z'))
#else
#define G0_G1_CONDITION true
#endif
/**
* G0, G1: Coordinated movement of X Y Z E axes
*/
2016-09-15 21:15:08 +02:00
inline void gcode_G0_G1(
#if IS_SCARA
bool fast_move=false
#endif
) {
if (IsRunning() && G0_G1_CONDITION) {
gcode_get_destination(); // For X Y Z E F
2015-04-14 02:17:36 +02:00
#if ENABLED(FWRETRACT)
if (MIN_AUTORETRACT <= MAX_AUTORETRACT) {
2018-01-04 23:42:56 +01:00
// When M209 Autoretract is enabled, convert E-only moves to firmware retract/prime moves
if (fwretract.autoretract_enabled && parser.seen('E') && !(parser.seen('X') || parser.seen('Y') || parser.seen('Z'))) {
2018-09-09 04:17:02 +02:00
const float echange = destination[E_CART] - current_position[E_CART];
2018-01-04 23:42:56 +01:00
// Is this a retract or prime move?
if (WITHIN(ABS(echange), MIN_AUTORETRACT, MAX_AUTORETRACT) && fwretract.retracted[active_extruder] == (echange > 0.0)) {
2018-09-09 04:17:02 +02:00
current_position[E_CART] = destination[E_CART]; // Hide a G1-based retract/prime from calculations
sync_plan_position_e(); // AND from the planner
2018-01-04 23:42:56 +01:00
return fwretract.retract(echange < 0.0); // Firmware-based retract/prime (double-retract ignored)
}
}
}
2017-05-20 10:03:08 +02:00
#endif // FWRETRACT
2015-04-14 02:17:36 +02:00
2016-09-15 21:15:08 +02:00
#if IS_SCARA
fast_move ? prepare_uninterpolated_move_to_destination() : prepare_move_to_destination();
#else
prepare_move_to_destination();
#endif
2017-11-29 00:49:08 +01:00
#if ENABLED(NANODLP_Z_SYNC)
#if ENABLED(NANODLP_ALL_AXIS)
#define _MOVE_SYNC parser.seenval('X') || parser.seenval('Y') || parser.seenval('Z') // For any move wait and output sync message
#else
#define _MOVE_SYNC parser.seenval('Z') // Only for Z move
#endif
if (_MOVE_SYNC) {
planner.synchronize();
SERIAL_ECHOLNPGM(MSG_Z_MOVE_COMP);
}
#endif
}
}
/**
* G2: Clockwise Arc
* G3: Counterclockwise Arc
2016-09-19 03:23:01 +02:00
*
* This command has two forms: IJ-form and R-form.
*
* - I specifies an X offset. J specifies a Y offset.
* At least one of the IJ parameters is required.
* X and Y can be omitted to do a complete circle.
* The given XY is not error-checked. The arc ends
* based on the angle of the destination.
* Mixing I or J with R will throw an error.
*
* - R specifies the radius. X or Y is required.
* Omitting both X and Y will throw an error.
* X or Y must differ from the current XY.
* Mixing R with I or J will throw an error.
*
* - P specifies the number of full circles to do
* before the specified arc move.
*
2016-09-19 03:23:01 +02:00
* Examples:
*
* G2 I10 ; CW circle centered at X+10
* G3 X20 Y12 R14 ; CCW circle with r=14 ending at X20 Y12
*/
#if ENABLED(ARC_SUPPORT)
2017-06-22 16:44:39 +02:00
2017-11-03 02:17:51 +01:00
inline void gcode_G2_G3(const bool clockwise) {
#if ENABLED(NO_MOTION_BEFORE_HOMING)
if (axis_unhomed_error()) return;
#endif
if (IsRunning()) {
#if ENABLED(SF_ARC_FIX)
const bool relative_mode_backup = relative_mode;
relative_mode = true;
#endif
gcode_get_destination();
#if ENABLED(SF_ARC_FIX)
relative_mode = relative_mode_backup;
#endif
float arc_offset[2] = { 0, 0 };
2017-06-27 06:31:45 +02:00
if (parser.seenval('R')) {
2017-05-20 10:03:08 +02:00
const float r = parser.value_linear_units(),
p1 = current_position[X_AXIS], q1 = current_position[Y_AXIS],
p2 = destination[X_AXIS], q2 = destination[Y_AXIS];
if (r && (p2 != p1 || q2 != q1)) {
const float e = clockwise ^ (r < 0) ? -1 : 1, // clockwise -1/1, counterclockwise 1/-1
dx = p2 - p1, dy = q2 - q1, // X and Y differences
d = HYPOT(dx, dy), // Linear distance between the points
h = SQRT(sq(r) - sq(d * 0.5f)), // Distance to the arc pivot-point
mx = (p1 + p2) * 0.5f, my = (q1 + q2) * 0.5f, // Point between the two points
sx = -dy / d, sy = dx / d, // Slope of the perpendicular bisector
cx = mx + e * h * sx, cy = my + e * h * sy; // Pivot-point of the arc
arc_offset[0] = cx - p1;
arc_offset[1] = cy - q1;
2016-09-19 03:23:01 +02:00
}
}
else {
2017-06-27 06:31:45 +02:00
if (parser.seenval('I')) arc_offset[0] = parser.value_linear_units();
if (parser.seenval('J')) arc_offset[1] = parser.value_linear_units();
2016-09-19 03:23:01 +02:00
}
2016-09-19 03:23:01 +02:00
if (arc_offset[0] || arc_offset[1]) {
#if ENABLED(ARC_P_CIRCLES)
// P indicates number of circles to do
int8_t circles_to_do = parser.byteval('P');
if (!WITHIN(circles_to_do, 0, 100)) {
SERIAL_ERROR_START();
SERIAL_ERRORLNPGM(MSG_ERR_ARC_ARGS);
}
while (circles_to_do--)
plan_arc(current_position, arc_offset, clockwise);
#endif
// Send the arc to the planner
2016-09-19 03:23:01 +02:00
plan_arc(destination, arc_offset, clockwise);
}
else {
// Bad arguments
2017-06-09 17:51:23 +02:00
SERIAL_ERROR_START();
2016-09-19 03:23:01 +02:00
SERIAL_ERRORLNPGM(MSG_ERR_ARC_ARGS);
}
}
}
2017-06-22 16:44:39 +02:00
#endif // ARC_SUPPORT
void dwell(millis_t time) {
time += millis();
while (PENDING(millis(), time)) idle();
}
/**
* G4: Dwell S<seconds> or P<milliseconds>
*/
inline void gcode_G4() {
2016-07-15 01:39:49 +02:00
millis_t dwell_ms = 0;
2017-06-27 06:31:45 +02:00
if (parser.seenval('P')) dwell_ms = parser.value_millis(); // milliseconds to wait
if (parser.seenval('S')) dwell_ms = parser.value_millis_from_seconds(); // seconds to wait
planner.synchronize();
#if ENABLED(NANODLP_Z_SYNC)
SERIAL_ECHOLNPGM(MSG_Z_MOVE_COMP);
#endif
if (!lcd_hasstatus()) LCD_MESSAGEPGM(MSG_DWELL);
dwell(dwell_ms);
}
#if ENABLED(BEZIER_CURVE_SUPPORT)
/**
* Parameters interpreted according to:
* http://linuxcnc.org/docs/2.6/html/gcode/gcode.html#sec:G5-Cubic-Spline
* However I, J omission is not supported at this point; all
* parameters can be omitted and default to zero.
*/
/**
* G5: Cubic B-spline
*/
inline void gcode_G5() {
#if ENABLED(NO_MOTION_BEFORE_HOMING)
if (axis_unhomed_error()) return;
#endif
if (IsRunning()) {
#if ENABLED(CNC_WORKSPACE_PLANES)
if (workspace_plane != PLANE_XY) {
SERIAL_ERROR_START();
SERIAL_ERRORLNPGM(MSG_ERR_BAD_PLANE_MODE);
return;
}
#endif
gcode_get_destination();
const float offset[] = {
parser.linearval('I'),
parser.linearval('J'),
parser.linearval('P'),
parser.linearval('Q')
};
plan_cubic_move(destination, offset);
}
}
#endif // BEZIER_CURVE_SUPPORT
2018-09-09 04:17:02 +02:00
#if ENABLED(UNREGISTERED_MOVE_SUPPORT)
/**
* G6 implementation for Hangprinter based on
* http://reprap.org/wiki/GCodes#G6:_Direct_Stepper_Move
* Accessed Jan 8, 2018
*
* G6 is used frequently to tighten lines with Hangprinter, so Hangprinter default is relative moves.
* Hangprinter uses switches
* S1 for absolute moves
* S2 for saving recording new line length after unregistered move
* (typically used while tuning LINE_BUILDUP_COMPENSATION_FEATURE parameters)
*/
/**
* G6: Direct Stepper Move
*/
inline void gcode_G6() {
bool count_it = false;
#if ENABLED(NO_MOTION_BEFORE_HOMING)
if (axis_unhomed_error()) return;
#endif
if (IsRunning()) {
float go[MOV_AXIS] = { 0.0 },
tmp_fr_mm_s = 0.0;
LOOP_MOV_AXIS(i)
if (parser.seen(RAW_AXIS_CODES(i)))
go[i] = parser.value_axis_units((AxisEnum)i);
#if ENABLED(HANGPRINTER)
#define GO_SRC line_lengths
#elif ENABLED(DELTA)
#define GO_SRC delta
#else
#define GO_SRC current_position
#endif
if (
#if ENABLED(HANGPRINTER) // Sending R to another machine is the same as not sending S1 to Hangprinter
parser.byteval('S') != 2
#else
parser.seen('R')
#endif
)
LOOP_MOV_AXIS(i) go[i] += GO_SRC[i];
else
LOOP_MOV_AXIS(i) if (!parser.seen(RAW_AXIS_CODES(i))) go[i] += GO_SRC[i];
tmp_fr_mm_s = parser.linearval('F') > 0.0 ? MMM_TO_MMS(parser.value_feedrate()) : feedrate_mm_s;
#if ENABLED(HANGPRINTER)
if (parser.byteval('S') == 2) {
LOOP_MOV_AXIS(i) line_lengths[i] = go[i];
count_it = true;
}
#endif
planner.buffer_segment(go[A_AXIS], go[B_AXIS], go[C_AXIS]
#if ENABLED(HANGPRINTER)
, go[D_AXIS]
#endif
, current_position[E_CART], tmp_fr_mm_s, active_extruder, 0.0, count_it
);
}
}
#endif
#if ENABLED(FWRETRACT)
/**
* G10 - Retract filament according to settings of M207
*/
2017-07-18 08:37:54 +02:00
inline void gcode_G10() {
#if EXTRUDERS > 1
2017-07-18 08:37:54 +02:00
const bool rs = parser.boolval('S');
#endif
2018-01-04 23:42:56 +01:00
fwretract.retract(true
2017-07-18 08:37:54 +02:00
#if EXTRUDERS > 1
, rs
#endif
);
}
2013-06-10 06:10:00 +02:00
2017-07-18 08:37:54 +02:00
/**
* G11 - Recover filament according to settings of M208
*/
2018-01-04 23:42:56 +01:00
inline void gcode_G11() { fwretract.retract(false); }
2017-07-18 08:37:54 +02:00
2017-05-09 19:35:43 +02:00
#endif // FWRETRACT
2013-06-10 06:10:00 +02:00
#if ENABLED(NOZZLE_CLEAN_FEATURE)
/**
* G12: Clean the nozzle
*/
inline void gcode_G12() {
// Don't allow nozzle cleaning without homing first
2017-05-14 22:57:37 +02:00
if (axis_unhomed_error()) return;
const uint8_t pattern = parser.ushortval('P', 0),
strokes = parser.ushortval('S', NOZZLE_CLEAN_STROKES),
objects = parser.ushortval('T', NOZZLE_CLEAN_TRIANGLES);
const float radius = parser.floatval('R', NOZZLE_CLEAN_CIRCLE_RADIUS);
Nozzle::clean(pattern, strokes, radius, objects);
}
#endif
#if ENABLED(CNC_WORKSPACE_PLANES)
2017-11-04 20:35:25 +01:00
inline void report_workspace_plane() {
SERIAL_ECHO_START();
SERIAL_ECHOPGM("Workspace Plane ");
2017-11-04 20:35:25 +01:00
serialprintPGM(
workspace_plane == PLANE_YZ ? PSTR("YZ\n") :
workspace_plane == PLANE_ZX ? PSTR("ZX\n") :
PSTR("XY\n")
);
}
inline void set_workspace_plane(const WorkspacePlane plane) {
workspace_plane = plane;
if (DEBUGGING(INFO)) report_workspace_plane();
}
/**
* G17: Select Plane XY
* G18: Select Plane ZX
* G19: Select Plane YZ
*/
2017-11-04 20:35:25 +01:00
inline void gcode_G17() { set_workspace_plane(PLANE_XY); }
inline void gcode_G18() { set_workspace_plane(PLANE_ZX); }
inline void gcode_G19() { set_workspace_plane(PLANE_YZ); }
#endif // CNC_WORKSPACE_PLANES
2017-11-01 19:08:46 +01:00
#if ENABLED(CNC_COORDINATE_SYSTEMS)
/**
* Select a coordinate system and update the workspace offset.
2017-11-01 19:08:46 +01:00
* System index -1 is used to specify machine-native.
*/
bool select_coordinate_system(const int8_t _new) {
if (active_coordinate_system == _new) return false;
float old_offset[XYZ] = { 0 }, new_offset[XYZ] = { 0 };
if (WITHIN(active_coordinate_system, 0, MAX_COORDINATE_SYSTEMS - 1))
COPY(old_offset, coordinate_system[active_coordinate_system]);
if (WITHIN(_new, 0, MAX_COORDINATE_SYSTEMS - 1))
COPY(new_offset, coordinate_system[_new]);
active_coordinate_system = _new;
LOOP_XYZ(i) {
const float diff = new_offset[i] - old_offset[i];
if (diff) {
position_shift[i] += diff;
update_software_endstops((AxisEnum)i);
}
}
return true;
}
/**
2018-03-21 07:38:41 +01:00
* G53: Apply native workspace to the current move
*
* In CNC G-code G53 is a modifier.
2017-11-01 19:08:46 +01:00
* It precedes a movement command (or other modifiers) on the same line.
* This is the first command to use parser.chain() to make this possible.
2018-03-21 07:38:41 +01:00
*
* Marlin also uses G53 on a line by itself to go back to native space.
2017-11-01 19:08:46 +01:00
*/
inline void gcode_G53() {
2018-03-21 07:38:41 +01:00
const int8_t _system = active_coordinate_system;
active_coordinate_system = -1;
if (parser.chain()) { // If this command has more following...
2017-11-01 19:08:46 +01:00
process_parsed_command();
active_coordinate_system = _system;
}
}
/**
* G54-G59.3: Select a new workspace
*
* A workspace is an XYZ offset to the machine native space.
* All workspaces default to 0,0,0 at start, or with EEPROM
* support they may be restored from a previous session.
*
* G92 is used to set the current workspace's offset.
*/
inline void gcode_G54_59(uint8_t subcode=0) {
const int8_t _space = parser.codenum - 54 + subcode;
if (select_coordinate_system(_space)) {
SERIAL_PROTOCOLLNPAIR("Select workspace ", _space);
report_current_position();
}
}
FORCE_INLINE void gcode_G54() { gcode_G54_59(); }
FORCE_INLINE void gcode_G55() { gcode_G54_59(); }
FORCE_INLINE void gcode_G56() { gcode_G54_59(); }
FORCE_INLINE void gcode_G57() { gcode_G54_59(); }
FORCE_INLINE void gcode_G58() { gcode_G54_59(); }
FORCE_INLINE void gcode_G59() { gcode_G54_59(parser.subcode); }
#endif
#if ENABLED(INCH_MODE_SUPPORT)
/**
* G20: Set input mode to inches
*/
2017-05-20 10:03:08 +02:00
inline void gcode_G20() { parser.set_input_linear_units(LINEARUNIT_INCH); }
/**
* G21: Set input mode to millimeters
*/
2017-05-20 10:03:08 +02:00
inline void gcode_G21() { parser.set_input_linear_units(LINEARUNIT_MM); }
#endif
#if ENABLED(NOZZLE_PARK_FEATURE)
/**
* G27: Park the nozzle
*/
inline void gcode_G27() {
// Don't allow nozzle parking without homing first
2017-05-14 22:57:37 +02:00
if (axis_unhomed_error()) return;
Nozzle::park(parser.ushortval('P'));
}
#endif // NOZZLE_PARK_FEATURE
#if ENABLED(QUICK_HOME)
static void quick_home_xy() {
// Pretend the current position is 0,0
current_position[X_AXIS] = current_position[Y_AXIS] = 0.0;
sync_plan_position();
const int x_axis_home_dir =
2016-07-20 19:30:10 +02:00
#if ENABLED(DUAL_X_CARRIAGE)
x_home_dir(active_extruder)
#else
home_dir(X_AXIS)
#endif
;
const float mlx = max_length(X_AXIS),
mly = max_length(Y_AXIS),
mlratio = mlx > mly ? mly / mlx : mlx / mly,
fr_mm_s = MIN(homing_feedrate(X_AXIS), homing_feedrate(Y_AXIS)) * SQRT(sq(mlratio) + 1.0);
2018-02-21 03:09:10 +01:00
#if ENABLED(SENSORLESS_HOMING)
sensorless_homing_per_axis(X_AXIS);
sensorless_homing_per_axis(Y_AXIS);
2018-02-21 03:09:10 +01:00
#endif
do_blocking_move_to_xy(1.5 * mlx * x_axis_home_dir, 1.5 * mly * home_dir(Y_AXIS), fr_mm_s);
endstops.validate_homing_move();
current_position[X_AXIS] = current_position[Y_AXIS] = 0.0;
2018-02-21 03:09:10 +01:00
#if ENABLED(SENSORLESS_HOMING)
sensorless_homing_per_axis(X_AXIS, false);
sensorless_homing_per_axis(Y_AXIS, false);
#endif
}
#endif // QUICK_HOME
2016-08-29 03:45:18 +02:00
#if ENABLED(DEBUG_LEVELING_FEATURE)
void log_machine_info() {
SERIAL_ECHOPGM("Machine Type: ");
#if ENABLED(DELTA)
SERIAL_ECHOLNPGM("Delta");
#elif IS_SCARA
2016-08-29 03:45:18 +02:00
SERIAL_ECHOLNPGM("SCARA");
2016-11-06 05:47:38 +01:00
#elif IS_CORE
2016-08-29 03:45:18 +02:00
SERIAL_ECHOLNPGM("Core");
#else
SERIAL_ECHOLNPGM("Cartesian");
#endif
SERIAL_ECHOPGM("Probe: ");
2017-03-20 07:42:41 +01:00
#if ENABLED(PROBE_MANUALLY)
SERIAL_ECHOLNPGM("PROBE_MANUALLY");
#elif ENABLED(FIX_MOUNTED_PROBE)
2016-08-29 03:45:18 +02:00
SERIAL_ECHOLNPGM("FIX_MOUNTED_PROBE");
#elif ENABLED(BLTOUCH)
SERIAL_ECHOLNPGM("BLTOUCH");
2018-04-02 06:51:12 +02:00
#elif HAS_Z_SERVO_PROBE
2016-09-30 04:28:23 +02:00
SERIAL_ECHOLNPGM("SERVO PROBE");
2016-08-29 03:45:18 +02:00
#elif ENABLED(Z_PROBE_SLED)
SERIAL_ECHOLNPGM("Z_PROBE_SLED");
#elif ENABLED(Z_PROBE_ALLEN_KEY)
SERIAL_ECHOLNPGM("Z_PROBE_ALLEN_KEY");
#else
SERIAL_ECHOLNPGM("NONE");
#endif
#if HAS_BED_PROBE
SERIAL_ECHOPAIR("Probe Offset X:", X_PROBE_OFFSET_FROM_EXTRUDER);
SERIAL_ECHOPAIR(" Y:", Y_PROBE_OFFSET_FROM_EXTRUDER);
SERIAL_ECHOPAIR(" Z:", zprobe_zoffset);
2017-06-15 22:17:41 +02:00
#if X_PROBE_OFFSET_FROM_EXTRUDER > 0
2016-08-29 03:45:18 +02:00
SERIAL_ECHOPGM(" (Right");
2017-06-15 22:17:41 +02:00
#elif X_PROBE_OFFSET_FROM_EXTRUDER < 0
2016-08-29 03:45:18 +02:00
SERIAL_ECHOPGM(" (Left");
2017-06-15 22:17:41 +02:00
#elif Y_PROBE_OFFSET_FROM_EXTRUDER != 0
2016-09-15 20:06:00 +02:00
SERIAL_ECHOPGM(" (Middle");
#else
SERIAL_ECHOPGM(" (Aligned With");
2016-08-29 03:45:18 +02:00
#endif
2017-06-15 22:17:41 +02:00
#if Y_PROBE_OFFSET_FROM_EXTRUDER > 0
#if IS_SCARA
SERIAL_ECHOPGM("-Distal");
#else
SERIAL_ECHOPGM("-Back");
#endif
2017-06-15 22:17:41 +02:00
#elif Y_PROBE_OFFSET_FROM_EXTRUDER < 0
#if IS_SCARA
SERIAL_ECHOPGM("-Proximal");
#else
SERIAL_ECHOPGM("-Front");
#endif
2017-06-15 22:17:41 +02:00
#elif X_PROBE_OFFSET_FROM_EXTRUDER != 0
2016-09-15 20:06:00 +02:00
SERIAL_ECHOPGM("-Center");
2016-08-29 03:45:18 +02:00
#endif
if (zprobe_zoffset < 0)
SERIAL_ECHOPGM(" & Below");
else if (zprobe_zoffset > 0)
SERIAL_ECHOPGM(" & Above");
else
SERIAL_ECHOPGM(" & Same Z as");
SERIAL_ECHOLNPGM(" Nozzle)");
#endif
#if HAS_ABL
SERIAL_ECHOPGM("Auto Bed Leveling: ");
#if ENABLED(AUTO_BED_LEVELING_LINEAR)
SERIAL_ECHOPGM("LINEAR");
#elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
SERIAL_ECHOPGM("BILINEAR");
#elif ENABLED(AUTO_BED_LEVELING_3POINT)
SERIAL_ECHOPGM("3POINT");
2017-03-18 16:15:54 +01:00
#elif ENABLED(AUTO_BED_LEVELING_UBL)
SERIAL_ECHOPGM("UBL");
#endif
if (planner.leveling_active) {
SERIAL_ECHOLNPGM(" (enabled)");
2018-01-23 18:32:53 +01:00
#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
if (planner.z_fade_height)
SERIAL_ECHOLNPAIR("Z Fade: ", planner.z_fade_height);
#endif
2017-03-20 07:42:41 +01:00
#if ABL_PLANAR
2017-06-12 08:25:40 +02:00
const float diff[XYZ] = {
planner.get_axis_position_mm(X_AXIS) - current_position[X_AXIS],
planner.get_axis_position_mm(Y_AXIS) - current_position[Y_AXIS],
planner.get_axis_position_mm(Z_AXIS) - current_position[Z_AXIS]
};
SERIAL_ECHOPGM("ABL Adjustment X");
if (diff[X_AXIS] > 0) SERIAL_CHAR('+');
SERIAL_ECHO(diff[X_AXIS]);
SERIAL_ECHOPGM(" Y");
if (diff[Y_AXIS] > 0) SERIAL_CHAR('+');
SERIAL_ECHO(diff[Y_AXIS]);
SERIAL_ECHOPGM(" Z");
if (diff[Z_AXIS] > 0) SERIAL_CHAR('+');
SERIAL_ECHO(diff[Z_AXIS]);
2018-01-23 18:32:53 +01:00
#else
#if ENABLED(AUTO_BED_LEVELING_UBL)
SERIAL_ECHOPGM("UBL Adjustment Z");
const float rz = ubl.get_z_correction(current_position[X_AXIS], current_position[Y_AXIS]);
#elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
SERIAL_ECHOPAIR("Bilinear Grid X", bilinear_start[X_AXIS]);
SERIAL_ECHOPAIR(" Y", bilinear_start[Y_AXIS]);
SERIAL_ECHOPAIR(" W", ABL_BG_SPACING(X_AXIS));
SERIAL_ECHOLNPAIR(" H", ABL_BG_SPACING(Y_AXIS));
SERIAL_ECHOPGM("ABL Adjustment Z");
const float rz = bilinear_z_offset(current_position);
#endif
SERIAL_ECHO(ftostr43sign(rz, '+'));
#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
if (planner.z_fade_height) {
SERIAL_ECHOPAIR(" (", ftostr43sign(rz * planner.fade_scaling_factor_for_z(current_position[Z_AXIS]), '+'));
SERIAL_CHAR(')');
}
#endif
#endif
}
2017-03-20 07:42:41 +01:00
else
SERIAL_ECHOLNPGM(" (disabled)");
2017-06-09 17:51:23 +02:00
SERIAL_EOL();
2017-03-20 07:42:41 +01:00
#elif ENABLED(MESH_BED_LEVELING)
2017-03-20 07:42:41 +01:00
SERIAL_ECHOPGM("Mesh Bed Leveling");
if (planner.leveling_active) {
SERIAL_ECHOLNPGM(" (enabled)");
2018-05-22 07:47:56 +02:00
SERIAL_ECHOPAIR("MBL Adjustment Z", ftostr43sign(mbl.get_z(current_position[X_AXIS], current_position[Y_AXIS]
#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
, 1.0
#endif
), '+'));
2018-01-23 18:32:53 +01:00
#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
if (planner.z_fade_height) {
SERIAL_ECHOPAIR(" (", ftostr43sign(
mbl.get_z(current_position[X_AXIS], current_position[Y_AXIS], planner.fade_scaling_factor_for_z(current_position[Z_AXIS])), '+'
));
SERIAL_CHAR(')');
}
#endif
}
2017-03-20 07:42:41 +01:00
else
SERIAL_ECHOPGM(" (disabled)");
2017-06-09 17:51:23 +02:00
SERIAL_EOL();
2017-03-20 07:42:41 +01:00
#endif // MESH_BED_LEVELING
2016-08-29 03:45:18 +02:00
}
#endif // DEBUG_LEVELING_FEATURE
2016-09-12 03:25:44 +02:00
#if ENABLED(DELTA)
#if ENABLED(SENSORLESS_HOMING)
inline void delta_sensorless_homing(const bool on=true) {
sensorless_homing_per_axis(A_AXIS, on);
sensorless_homing_per_axis(B_AXIS, on);
sensorless_homing_per_axis(C_AXIS, on);
}
#endif
2016-09-12 03:25:44 +02:00
/**
* A delta can only safely home all axes at the same time
* This is like quick_home_xy() but for 3 towers.
*/
inline void home_delta() {
2016-10-02 08:48:17 +02:00
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) DEBUG_POS(">>> home_delta", current_position);
#endif
2016-09-12 03:25:44 +02:00
// Init the current position of all carriages to 0,0,0
2016-10-22 17:07:18 +02:00
ZERO(current_position);
2016-09-12 03:25:44 +02:00
sync_plan_position();
// Disable stealthChop if used. Enable diag1 pin on driver.
#if ENABLED(SENSORLESS_HOMING)
delta_sensorless_homing();
#endif
2016-09-12 03:25:44 +02:00
// Move all carriages together linearly until an endstop is hit.
current_position[X_AXIS] = current_position[Y_AXIS] = current_position[Z_AXIS] = (delta_height + 10);
feedrate_mm_s = homing_feedrate(X_AXIS);
2017-11-09 04:28:11 +01:00
buffer_line_to_current_position();
planner.synchronize();
// Re-enable stealthChop if used. Disable diag1 pin on driver.
#if ENABLED(SENSORLESS_HOMING)
delta_sensorless_homing(false);
#endif
endstops.validate_homing_move();
2016-09-12 03:25:44 +02:00
// At least one carriage has reached the top.
2016-10-02 08:48:17 +02:00
// Now re-home each carriage separately.
2018-07-01 01:07:40 +02:00
homeaxis(A_AXIS);
homeaxis(B_AXIS);
homeaxis(C_AXIS);
2016-09-12 03:25:44 +02:00
// Set all carriages to their home positions
// Do this here all at once for Delta, because
// XYZ isn't ABC. Applying this per-tower would
// give the impression that they are the same.
LOOP_XYZ(i) set_axis_is_at_home((AxisEnum)i);
SYNC_PLAN_POSITION_KINEMATIC();
#if ENABLED(DEBUG_LEVELING_FEATURE)
2016-10-02 08:48:17 +02:00
if (DEBUGGING(LEVELING)) DEBUG_POS("<<< home_delta", current_position);
2016-09-12 03:25:44 +02:00
#endif
}
2018-09-09 04:17:02 +02:00
#elif ENABLED(HANGPRINTER)
/**
* A hangprinter cannot home itself
*/
inline void home_hangprinter() {
SERIAL_ECHOLNPGM("Warning: G28 is not implemented for Hangprinter.");
}
#endif
2016-09-12 03:25:44 +02:00
2018-04-30 09:59:11 +02:00
#ifdef Z_AFTER_PROBING
void move_z_after_probing() {
if (current_position[Z_AXIS] != Z_AFTER_PROBING) {
do_blocking_move_to_z(Z_AFTER_PROBING);
current_position[Z_AXIS] = Z_AFTER_PROBING;
}
}
#endif
2016-09-12 03:39:39 +02:00
#if ENABLED(Z_SAFE_HOMING)
inline void home_z_safely() {
// Disallow Z homing if X or Y are unknown
2018-06-12 04:42:39 +02:00
if (!TEST(axis_known_position, X_AXIS) || !TEST(axis_known_position, Y_AXIS)) {
2016-09-12 03:39:39 +02:00
LCD_MESSAGEPGM(MSG_ERR_Z_HOMING);
2017-06-09 17:51:23 +02:00
SERIAL_ECHO_START();
2016-09-12 03:39:39 +02:00
SERIAL_ECHOLNPGM(MSG_ERR_Z_HOMING);
return;
}
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Z_SAFE_HOMING >>>");
#endif
SYNC_PLAN_POSITION_KINEMATIC();
/**
* Move the Z probe (or just the nozzle) to the safe homing point
*/
2017-11-03 02:17:51 +01:00
destination[X_AXIS] = Z_SAFE_HOMING_X_POINT;
destination[Y_AXIS] = Z_SAFE_HOMING_Y_POINT;
destination[Z_AXIS] = current_position[Z_AXIS]; // Z is already at the right height
#if HOMING_Z_WITH_PROBE
destination[X_AXIS] -= X_PROBE_OFFSET_FROM_EXTRUDER;
destination[Y_AXIS] -= Y_PROBE_OFFSET_FROM_EXTRUDER;
#endif
2016-11-07 07:21:45 +01:00
2017-11-03 02:17:51 +01:00
if (position_is_reachable(destination[X_AXIS], destination[Y_AXIS])) {
2016-11-07 07:21:45 +01:00
2016-09-22 01:38:47 +02:00
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) DEBUG_POS("Z_SAFE_HOMING", destination);
#endif
// This causes the carriage on Dual X to unpark
#if ENABLED(DUAL_X_CARRIAGE)
active_extruder_parked = false;
#endif
#if ENABLED(SENSORLESS_HOMING)
safe_delay(500); // Short delay needed to settle
#endif
do_blocking_move_to_xy(destination[X_AXIS], destination[Y_AXIS]);
2018-07-01 01:07:40 +02:00
homeaxis(Z_AXIS);
2016-09-12 03:39:39 +02:00
}
else {
LCD_MESSAGEPGM(MSG_ZPROBE_OUT);
2017-06-09 17:51:23 +02:00
SERIAL_ECHO_START();
2016-09-12 03:39:39 +02:00
SERIAL_ECHOLNPGM(MSG_ZPROBE_OUT);
}
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< Z_SAFE_HOMING");
#endif
}
#endif // Z_SAFE_HOMING
2017-03-15 09:32:00 +01:00
#if ENABLED(PROBE_MANUALLY)
bool g29_in_progress = false;
2017-03-15 09:32:00 +01:00
#else
constexpr bool g29_in_progress = false;
#endif
/**
* G28: Home all axes according to settings
*
* Parameters
*
* None Home to all axes with no parameters.
* With QUICK_HOME enabled XY will home together, then Z.
*
* O Home only if position is unknown
*
* Rn Raise by n mm/inches before homing
*
* Cartesian parameters
*
* X Home to the X endstop
* Y Home to the Y endstop
* Z Home to the Z endstop
*
*/
inline void gcode_G28(const bool always_home_all) {
2015-04-04 00:31:35 +02:00
2015-08-05 13:40:36 +02:00
#if ENABLED(DEBUG_LEVELING_FEATURE)
2016-08-29 03:45:18 +02:00
if (DEBUGGING(LEVELING)) {
2018-06-22 02:45:45 +02:00
SERIAL_ECHOLNPGM(">>> G28");
2016-08-29 03:45:18 +02:00
log_machine_info();
}
2015-07-10 01:57:44 +02:00
#endif
2018-06-22 02:45:45 +02:00
#if ENABLED(MARLIN_DEV_MODE)
if (parser.seen('S')) {
LOOP_XYZ(a) set_axis_is_at_home((AxisEnum)a);
SYNC_PLAN_POSITION_KINEMATIC();
SERIAL_ECHOLNPGM("Simulated Homing");
report_current_position();
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< G28");
#endif
return;
}
#endif
if (all_axes_known() && parser.boolval('O')) { // home only if needed
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) {
SERIAL_ECHOLNPGM("> homing not needed, skip");
SERIAL_ECHOLNPGM("<<< G28");
}
#endif
return;
}
2015-05-12 09:31:51 +02:00
// Wait for planner moves to finish!
planner.synchronize();
2015-05-12 09:31:51 +02:00
2017-03-15 09:32:00 +01:00
// Cancel the active G29 session
#if ENABLED(PROBE_MANUALLY)
g29_in_progress = false;
#endif
// Disable the leveling matrix before homing
2017-05-01 23:13:09 +02:00
#if HAS_LEVELING
#if ENABLED(RESTORE_LEVELING_AFTER_G28)
const bool leveling_was_active = planner.leveling_active;
#endif
set_bed_leveling_enabled(false);
#endif
2013-06-10 06:10:00 +02:00
#if ENABLED(CNC_WORKSPACE_PLANES)
workspace_plane = PLANE_XY;
#endif
2018-06-10 23:24:12 +02:00
#if ENABLED(BLTOUCH)
// Make sure any BLTouch error condition is cleared
2018-06-13 21:08:47 +02:00
bltouch_command(BLTOUCH_RESET);
2018-06-10 23:24:12 +02:00
set_bltouch_deployed(false);
#endif
2016-07-20 04:37:31 +02:00
// Always home with tool 0 active
#if HOTENDS > 1
#if DISABLED(DELTA) || ENABLED(DELTA_HOME_TO_SAFE_ZONE)
const uint8_t old_tool_index = active_extruder;
#endif
2016-07-20 04:37:31 +02:00
tool_change(0, 0, true);
#endif
2016-07-20 19:30:10 +02:00
#if ENABLED(DUAL_X_CARRIAGE) || ENABLED(DUAL_NOZZLE_DUPLICATION_MODE)
extruder_duplication_enabled = false;
#endif
setup_for_endstop_or_probe_move();
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> endstops.enable(true)");
#endif
endstops.enable(true); // Enable endstops for next homing move
#if ENABLED(DELTA)
2016-08-28 02:53:02 +02:00
2016-09-12 03:25:44 +02:00
home_delta();
UNUSED(always_home_all);
2015-07-10 01:57:44 +02:00
2018-09-09 04:17:02 +02:00
#elif ENABLED(HANGPRINTER)
home_hangprinter();
UNUSED(always_home_all);
#else // NOT Delta or Hangprinter
2017-05-20 10:03:08 +02:00
const bool homeX = always_home_all || parser.seen('X'),
homeY = always_home_all || parser.seen('Y'),
homeZ = always_home_all || parser.seen('Z'),
home_all = (!homeX && !homeY && !homeZ) || (homeX && homeY && homeZ);
set_destination_from_current();
#if Z_HOME_DIR > 0 // If homing away from BED do Z first
2018-07-01 01:07:40 +02:00
if (home_all || homeZ) homeaxis(Z_AXIS);
2017-12-06 02:40:57 +01:00
#endif
const float z_homing_height = (
#if ENABLED(UNKNOWN_Z_NO_RAISE)
2018-06-12 04:42:39 +02:00
!TEST(axis_known_position, Z_AXIS) ? 0 :
#endif
(parser.seenval('R') ? parser.value_linear_units() : Z_HOMING_HEIGHT)
);
if (z_homing_height && (home_all || homeX || homeY)) {
2017-12-06 02:40:57 +01:00
// Raise Z before homing any other axes and z is not already high enough (never lower z)
destination[Z_AXIS] = z_homing_height;
2017-12-06 02:40:57 +01:00
if (destination[Z_AXIS] > current_position[Z_AXIS]) {
2017-12-06 02:40:57 +01:00
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING))
SERIAL_ECHOLNPAIR("Raise Z (before homing) to ", destination[Z_AXIS]);
#endif
2017-12-06 02:40:57 +01:00
do_blocking_move_to_z(destination[Z_AXIS]);
}
2017-12-06 02:40:57 +01:00
}
2015-07-10 01:57:44 +02:00
#if ENABLED(QUICK_HOME)
2015-07-10 01:57:44 +02:00
if (home_all || (homeX && homeY)) quick_home_xy();
2015-04-01 10:44:13 +02:00
#endif
// Home Y (before X)
#if ENABLED(HOME_Y_BEFORE_X)
if (home_all || homeY
#if ENABLED(CODEPENDENT_XY_HOMING)
|| homeX
2016-06-27 18:01:11 +02:00
#endif
2018-07-01 01:07:40 +02:00
) homeaxis(Y_AXIS);
#endif
// Home X
if (home_all || homeX
#if ENABLED(CODEPENDENT_XY_HOMING) && DISABLED(HOME_Y_BEFORE_X)
|| homeY
#endif
) {
2016-11-07 07:21:45 +01:00
#if ENABLED(DUAL_X_CARRIAGE)
2016-11-07 07:21:45 +01:00
// Always home the 2nd (right) extruder first
active_extruder = 1;
2018-07-01 01:07:40 +02:00
homeaxis(X_AXIS);
2016-11-07 07:21:45 +01:00
// Remember this extruder's position for later tool change
2017-11-03 02:17:51 +01:00
inactive_extruder_x_pos = current_position[X_AXIS];
2016-11-07 07:21:45 +01:00
// Home the 1st (left) extruder
active_extruder = 0;
2018-07-01 01:07:40 +02:00
homeaxis(X_AXIS);
2016-11-07 07:21:45 +01:00
// Consider the active extruder to be parked
2017-03-05 02:19:06 +01:00
COPY(raised_parked_position, current_position);
delayed_move_time = 0;
active_extruder_parked = true;
2016-11-07 07:21:45 +01:00
#else
2016-11-07 07:21:45 +01:00
2018-07-01 01:07:40 +02:00
homeaxis(X_AXIS);
2016-11-07 07:21:45 +01:00
#endif
}
// Home Y (after X)
#if DISABLED(HOME_Y_BEFORE_X)
2018-07-01 01:07:40 +02:00
if (home_all || homeY) homeaxis(Y_AXIS);
#endif
// Home Z last if homing towards the bed
#if Z_HOME_DIR < 0
if (home_all || homeZ) {
#if ENABLED(Z_SAFE_HOMING)
2016-09-12 03:39:39 +02:00
home_z_safely();
#else
2018-07-01 01:07:40 +02:00
homeaxis(Z_AXIS);
2016-09-12 03:39:39 +02:00
#endif
2018-04-30 09:59:11 +02:00
#if HOMING_Z_WITH_PROBE && defined(Z_AFTER_PROBING)
move_z_after_probing();
2015-07-10 01:57:44 +02:00
#endif
} // home_all || homeZ
#endif // Z_HOME_DIR < 0
SYNC_PLAN_POSITION_KINEMATIC();
#endif // !DELTA (gcode_G28)
2016-06-22 23:20:34 +02:00
endstops.not_homing();
#if ENABLED(DELTA) && ENABLED(DELTA_HOME_TO_SAFE_ZONE)
2016-10-02 08:48:17 +02:00
// move to a height where we can use the full xy-area
do_blocking_move_to_z(delta_clip_start_height);
#endif
2017-05-12 06:22:58 +02:00
#if ENABLED(RESTORE_LEVELING_AFTER_G28)
set_bed_leveling_enabled(leveling_was_active);
#endif
2016-10-02 08:48:17 +02:00
2016-06-22 23:20:34 +02:00
clean_up_after_endstop_or_probe_move();
2016-07-20 04:37:31 +02:00
// Restore the active tool after homing
#if HOTENDS > 1 && (DISABLED(DELTA) || ENABLED(DELTA_HOME_TO_SAFE_ZONE))
2017-11-01 19:08:46 +01:00
#if ENABLED(PARKING_EXTRUDER)
#define NO_FETCH false // fetch the previous toolhead
#else
#define NO_FETCH true
#endif
tool_change(old_tool_index, 0, NO_FETCH);
2016-07-20 04:37:31 +02:00
#endif
2017-05-29 22:15:13 +02:00
lcd_refresh();
report_current_position();
2017-03-15 09:20:41 +01:00
#if ENABLED(NANODLP_Z_SYNC)
#if ENABLED(NANODLP_ALL_AXIS)
#define _HOME_SYNC true // For any axis, output sync text.
#else
#define _HOME_SYNC (home_all || homeZ) // Only for Z-axis
#endif
if (_HOME_SYNC)
SERIAL_ECHOLNPGM(MSG_Z_MOVE_COMP);
#endif
2017-03-15 09:20:41 +01:00
#if ENABLED(DEBUG_LEVELING_FEATURE)
2018-06-22 02:45:45 +02:00
if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< G28");
2017-03-15 09:20:41 +01:00
#endif
} // G28
void home_all_axes() { gcode_G28(true); }
2017-03-15 09:32:00 +01:00
#if ENABLED(MESH_BED_LEVELING) || ENABLED(PROBE_MANUALLY)
2016-08-29 03:45:18 +02:00
2017-11-03 02:17:51 +01:00
inline void _manual_goto_xy(const float &rx, const float &ry) {
#ifdef MANUAL_PROBE_START_Z
#if MANUAL_PROBE_HEIGHT > 0
do_blocking_move_to(rx, ry, MANUAL_PROBE_HEIGHT);
do_blocking_move_to_z(MAX(0,MANUAL_PROBE_START_Z));
#else
do_blocking_move_to(rx, ry, MAX(0,MANUAL_PROBE_START_Z));
#endif
#elif MANUAL_PROBE_HEIGHT > 0
const float prev_z = current_position[Z_AXIS];
2017-11-11 03:37:41 +01:00
do_blocking_move_to(rx, ry, MANUAL_PROBE_HEIGHT);
do_blocking_move_to_z(prev_z);
#else
do_blocking_move_to_xy(rx, ry);
2016-04-13 11:37:41 +02:00
#endif
current_position[X_AXIS] = rx;
current_position[Y_AXIS] = ry;
2017-05-25 22:13:57 +02:00
2017-11-27 07:08:03 +01:00
#if ENABLED(LCD_BED_LEVELING)
2017-05-25 22:13:57 +02:00
lcd_wait_for_move = false;
#endif
2016-04-13 11:37:41 +02:00
}
2017-03-15 09:32:00 +01:00
#endif
#if ENABLED(MESH_BED_LEVELING)
// Save 130 bytes with non-duplication of PSTR
2017-05-16 09:34:36 +02:00
void echo_not_entered() { SERIAL_PROTOCOLLNPGM(" not entered."); }
/**
* G29: Mesh-based Z probe, probes a grid and produces a
* mesh to compensate for variable bed height
*
* Parameters With MESH_BED_LEVELING:
*
* S0 Produce a mesh report
* S1 Start probing mesh points
* S2 Probe the next mesh point
* S3 Xn Yn Zn.nn Manually modify a single point
* S4 Zn.nn Set z offset. Positive away from bed, negative closer to bed.
* S5 Reset and disable mesh
*
* The S0 report the points as below
*
* +----> X-axis 1-n
* |
* |
* v Y-axis 1-n
2015-08-05 13:40:36 +02:00
*
*/
2015-03-21 14:50:47 +01:00
inline void gcode_G29() {
2017-03-25 08:39:01 +01:00
static int mbl_probe_index = -1;
2017-03-16 23:20:24 +01:00
#if HAS_SOFTWARE_ENDSTOPS
2017-03-15 09:20:41 +01:00
static bool enable_soft_endstops;
#endif
2018-04-20 07:00:48 +02:00
MeshLevelingState state = (MeshLevelingState)parser.byteval('S', (int8_t)MeshReport);
2017-03-31 16:00:49 +02:00
if (!WITHIN(state, 0, 5)) {
SERIAL_PROTOCOLLNPGM("S out of range (0-5).");
2015-04-04 00:31:35 +02:00
return;
2015-03-21 14:50:47 +01:00
}
2016-05-22 02:38:14 +02:00
int8_t px, py;
switch (state) {
2015-04-04 00:31:35 +02:00
case MeshReport:
if (leveling_is_valid()) {
SERIAL_PROTOCOLLNPAIR("State: ", planner.leveling_active ? MSG_ON : MSG_OFF);
2018-01-07 07:03:16 +01:00
mbl.report_mesh();
2015-03-21 14:50:47 +01:00
}
2015-04-04 00:31:35 +02:00
else
SERIAL_PROTOCOLLNPGM("Mesh bed leveling has no data.");
2015-04-04 00:31:35 +02:00
break;
2015-03-21 14:50:47 +01:00
2015-04-04 00:31:35 +02:00
case MeshStart:
mbl.reset();
2017-03-25 08:39:01 +01:00
mbl_probe_index = 0;
2018-04-20 07:00:48 +02:00
if (!lcd_wait_for_move) {
enqueue_and_echo_commands_P(PSTR("G28\nG29 S2"));
return;
}
state = MeshNext;
2015-03-21 14:50:47 +01:00
2015-04-04 00:31:35 +02:00
case MeshNext:
2017-03-25 08:39:01 +01:00
if (mbl_probe_index < 0) {
2015-04-04 00:31:35 +02:00
SERIAL_PROTOCOLLNPGM("Start mesh probing with \"G29 S1\" first.");
return;
}
2016-04-13 11:37:41 +02:00
// For each G29 S2...
2017-03-25 08:39:01 +01:00
if (mbl_probe_index == 0) {
2017-03-16 23:20:24 +01:00
#if HAS_SOFTWARE_ENDSTOPS
2017-03-15 09:20:41 +01:00
// For the initial G29 S2 save software endstop state
enable_soft_endstops = soft_endstops_enabled;
#endif
2018-04-13 05:41:21 +02:00
// Move close to the bed before the first point
do_blocking_move_to_z(0);
2015-04-04 00:31:35 +02:00
}
else {
2018-04-20 07:00:48 +02:00
// Save Z for the previous mesh position
2017-03-25 08:39:01 +01:00
mbl.set_zigzag_z(mbl_probe_index - 1, current_position[Z_AXIS]);
2017-03-16 23:20:24 +01:00
#if HAS_SOFTWARE_ENDSTOPS
2017-03-15 09:20:41 +01:00
soft_endstops_enabled = enable_soft_endstops;
#endif
2015-04-04 00:31:35 +02:00
}
2016-04-13 11:37:41 +02:00
// If there's another point to sample, move there with optional lift.
2017-05-12 06:22:35 +02:00
if (mbl_probe_index < GRID_MAX_POINTS) {
2017-03-16 23:20:24 +01:00
#if HAS_SOFTWARE_ENDSTOPS
2017-03-15 09:20:41 +01:00
// Disable software endstops to allow manual adjustment
// If G29 is not completed, they will not be re-enabled
soft_endstops_enabled = false;
#endif
2018-04-13 05:41:21 +02:00
mbl.zigzag(mbl_probe_index++, px, py);
_manual_goto_xy(mbl.index_to_xpos[px], mbl.index_to_ypos[py]);
2015-04-04 00:31:35 +02:00
}
else {
2016-04-13 11:37:41 +02:00
// One last "return to the bed" (as originally coded) at completion
current_position[Z_AXIS] = MANUAL_PROBE_HEIGHT;
2017-11-09 04:28:11 +01:00
buffer_line_to_current_position();
planner.synchronize();
2016-04-13 11:37:41 +02:00
// After recording the last point, activate home and activate
2017-03-25 08:39:01 +01:00
mbl_probe_index = -1;
SERIAL_PROTOCOLLNPGM("Mesh probing done.");
BUZZ(100, 659);
BUZZ(100, 698);
2017-11-27 07:08:03 +01:00
home_all_axes();
set_bed_leveling_enabled(true);
#if ENABLED(MESH_G28_REST_ORIGIN)
current_position[Z_AXIS] = 0;
2017-11-27 07:08:03 +01:00
set_destination_from_current();
buffer_line_to_destination(homing_feedrate(Z_AXIS));
planner.synchronize();
2017-11-27 07:08:03 +01:00
#endif
#if ENABLED(LCD_BED_LEVELING)
lcd_wait_for_move = false;
#endif
2015-04-04 00:31:35 +02:00
}
break;
case MeshSet:
2017-06-27 06:31:45 +02:00
if (parser.seenval('X')) {
2017-05-20 10:03:08 +02:00
px = parser.value_int() - 1;
if (!WITHIN(px, 0, GRID_MAX_POINTS_X - 1)) {
SERIAL_PROTOCOLLNPGM("X out of range (1-" STRINGIFY(GRID_MAX_POINTS_X) ").");
return;
}
2015-10-13 12:51:34 +02:00
}
else {
2017-05-16 09:34:36 +02:00
SERIAL_CHAR('X'); echo_not_entered();
return;
}
2016-08-22 19:46:08 +02:00
2017-06-27 06:31:45 +02:00
if (parser.seenval('Y')) {
2017-05-20 10:03:08 +02:00
py = parser.value_int() - 1;
if (!WITHIN(py, 0, GRID_MAX_POINTS_Y - 1)) {
SERIAL_PROTOCOLLNPGM("Y out of range (1-" STRINGIFY(GRID_MAX_POINTS_Y) ").");
return;
}
2015-10-13 12:51:34 +02:00
}
else {
2017-05-16 09:34:36 +02:00
SERIAL_CHAR('Y'); echo_not_entered();
return;
}
2016-08-22 19:46:08 +02:00
2017-11-27 07:08:03 +01:00
if (parser.seenval('Z'))
2017-05-20 10:03:08 +02:00
mbl.z_values[px][py] = parser.value_linear_units();
else {
2017-05-16 09:34:36 +02:00
SERIAL_CHAR('Z'); echo_not_entered();
return;
}
break;
case MeshSetZOffset:
2017-11-27 07:08:03 +01:00
if (parser.seenval('Z'))
2017-05-20 10:03:08 +02:00
mbl.z_offset = parser.value_linear_units();
else {
2017-05-16 09:34:36 +02:00
SERIAL_CHAR('Z'); echo_not_entered();
return;
}
break;
case MeshReset:
2017-03-15 09:20:41 +01:00
reset_bed_level();
break;
2018-06-02 23:50:22 +02:00
} // switch (state)
2018-04-20 07:00:48 +02:00
if (state == MeshNext) {
SERIAL_PROTOCOLPAIR("MBL G29 point ", MIN(mbl_probe_index, GRID_MAX_POINTS));
2017-11-27 07:08:03 +01:00
SERIAL_PROTOCOLLNPAIR(" of ", int(GRID_MAX_POINTS));
}
report_current_position();
2015-03-21 14:50:47 +01:00
}
2017-10-14 03:47:44 +02:00
#elif OLDSCHOOL_ABL
2017-03-15 09:32:00 +01:00
#if ABL_GRID
#if ENABLED(PROBE_Y_FIRST)
#define PR_OUTER_VAR xCount
#define PR_OUTER_END abl_grid_points_x
#define PR_INNER_VAR yCount
#define PR_INNER_END abl_grid_points_y
#else
#define PR_OUTER_VAR yCount
#define PR_OUTER_END abl_grid_points_y
#define PR_INNER_VAR xCount
#define PR_INNER_END abl_grid_points_x
#endif
#endif
/**
* G29: Detailed Z probe, probes the bed at 3 or more points.
* Will fail if the printer has not been homed with G28.
*
* Enhanced G29 Auto Bed Leveling Probe Routine
2015-08-05 13:40:36 +02:00
*
* O Auto-level only if needed
*
2017-03-15 09:32:00 +01:00
* D Dry-Run mode. Just evaluate the bed Topology - Don't apply
* or alter the bed level data. Useful to check the topology
* after a first run of G29.
*
* J Jettison current bed leveling data
*
* V Set the verbose level (0-4). Example: "G29 V3"
*
* Parameters With LINEAR leveling only:
*
* P Set the size of the grid that will be probed (P x P points).
* Example: "G29 P4"
*
2017-03-15 09:32:00 +01:00
* X Set the X size of the grid that will be probed (X x Y points).
* Example: "G29 X7 Y5"
*
2017-03-15 09:32:00 +01:00
* Y Set the Y size of the grid that will be probed (X x Y points).
*
* T Generate a Bed Topology Report. Example: "G29 P5 T" for a detailed report.
* This is useful for manual bed leveling and finding flaws in the bed (to
* assist with part placement).
* Not supported by non-linear delta printer bed leveling.
*
2017-03-15 09:32:00 +01:00
* Parameters With LINEAR and BILINEAR leveling only:
*
* S Set the XY travel speed between probe points (in units/min)
*
* F Set the Front limit of the probing grid
* B Set the Back limit of the probing grid
* L Set the Left limit of the probing grid
* R Set the Right limit of the probing grid
*
2017-02-26 03:10:57 +01:00
* Parameters with DEBUG_LEVELING_FEATURE only:
*
* C Make a totally fake grid with no actual probing.
* For use in testing when no probing is possible.
*
2017-03-15 09:32:00 +01:00
* Parameters with BILINEAR leveling only:
*
2016-12-16 04:03:21 +01:00
* Z Supply an additional Z probe offset
*
2017-03-15 09:32:00 +01:00
* Extra parameters with PROBE_MANUALLY:
*
* To do manual probing simply repeat G29 until the procedure is complete.
* The first G29 accepts parameters. 'G29 Q' for status, 'G29 A' to abort.
*
* Q Query leveling and G29 state
*
* A Abort current leveling procedure
*
2017-07-03 08:08:59 +02:00
* Extra parameters with BILINEAR only:
*
* W Write a mesh point. (If G29 is idle.)
* I X index for mesh point
* J Y index for mesh point
* X X for mesh point, overrides I
* Y Y for mesh point, overrides J
* Z Z for mesh point. Otherwise, raw current Z.
2017-03-15 09:32:00 +01:00
*
* Without PROBE_MANUALLY:
*
* E By default G29 will engage the Z probe, test the bed, then disengage.
* Include "E" to engage/disengage the Z probe for each sample.
* There's no extra effect if you have a fixed Z probe.
*
*/
inline void gcode_G29() {
2018-01-23 20:05:15 +01:00
#if ENABLED(DEBUG_LEVELING_FEATURE) || ENABLED(PROBE_MANUALLY)
const bool seenQ = parser.seen('Q');
#else
constexpr bool seenQ = false;
#endif
2017-03-15 09:32:00 +01:00
// G29 Q is also available if debugging
2015-08-05 13:40:36 +02:00
#if ENABLED(DEBUG_LEVELING_FEATURE)
const uint8_t old_debug_flags = marlin_debug_flags;
2018-01-23 20:05:15 +01:00
if (seenQ) marlin_debug_flags |= DEBUG_LEVELING;
2016-03-30 04:50:01 +02:00
if (DEBUGGING(LEVELING)) {
2017-12-25 15:19:06 +01:00
DEBUG_POS(">>> G29", current_position);
2016-08-29 03:45:18 +02:00
log_machine_info();
2015-08-05 13:40:36 +02:00
}
marlin_debug_flags = old_debug_flags;
2017-03-15 09:32:00 +01:00
#if DISABLED(PROBE_MANUALLY)
2018-01-23 20:05:15 +01:00
if (seenQ) return;
2017-03-15 09:32:00 +01:00
#endif
2015-07-10 01:57:44 +02:00
#endif
#if ENABLED(PROBE_MANUALLY)
2018-01-23 20:05:15 +01:00
const bool seenA = parser.seen('A');
2017-02-26 03:10:57 +01:00
#else
2018-01-23 20:05:15 +01:00
constexpr bool seenA = false;
2017-02-26 03:10:57 +01:00
#endif
2018-01-23 20:05:15 +01:00
const bool no_action = seenA || seenQ,
faux =
#if ENABLED(DEBUG_LEVELING_FEATURE) && DISABLED(PROBE_MANUALLY)
parser.boolval('C')
#else
no_action
#endif
;
2015-04-04 00:31:35 +02:00
// Don't allow auto-leveling without homing first
2017-05-14 22:57:37 +02:00
if (axis_unhomed_error()) return;
if (!no_action && planner.leveling_active && parser.boolval('O')) { // Auto-level only if needed
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) {
SERIAL_ECHOLNPGM("> Auto-level not needed, skip");
SERIAL_ECHOLNPGM("<<< G29");
}
#endif
return;
}
2017-03-15 09:32:00 +01:00
// Define local vars 'static' for manual probing, 'auto' otherwise
#if ENABLED(PROBE_MANUALLY)
#define ABL_VAR static
#else
#define ABL_VAR
#endif
2017-04-18 21:39:57 +02:00
ABL_VAR int verbose_level;
2017-03-15 09:32:00 +01:00
ABL_VAR float xProbe, yProbe, measured_z;
ABL_VAR bool dryrun, abl_should_enable;
2017-04-18 21:39:57 +02:00
#if ENABLED(PROBE_MANUALLY) || ENABLED(AUTO_BED_LEVELING_LINEAR)
ABL_VAR int16_t abl_probe_index;
2017-04-18 21:39:57 +02:00
#endif
2017-04-22 07:07:37 +02:00
#if HAS_SOFTWARE_ENDSTOPS && ENABLED(PROBE_MANUALLY)
2017-03-15 09:32:00 +01:00
ABL_VAR bool enable_soft_endstops = true;
#endif
#if ABL_GRID
2017-04-18 21:39:57 +02:00
#if ENABLED(PROBE_MANUALLY)
ABL_VAR uint8_t PR_OUTER_VAR;
ABL_VAR int8_t PR_INNER_VAR;
#endif
2017-03-15 09:32:00 +01:00
ABL_VAR int left_probe_bed_position, right_probe_bed_position, front_probe_bed_position, back_probe_bed_position;
ABL_VAR float xGridSpacing = 0, yGridSpacing = 0;
2017-06-04 14:39:31 +02:00
#if ENABLED(AUTO_BED_LEVELING_LINEAR)
ABL_VAR uint8_t abl_grid_points_x = GRID_MAX_POINTS_X,
abl_grid_points_y = GRID_MAX_POINTS_Y;
2017-03-15 09:32:00 +01:00
ABL_VAR bool do_topography_map;
2017-06-04 14:39:31 +02:00
#else // Bilinear
uint8_t constexpr abl_grid_points_x = GRID_MAX_POINTS_X,
abl_grid_points_y = GRID_MAX_POINTS_Y;
2017-04-18 21:39:57 +02:00
#endif
2017-03-15 09:32:00 +01:00
2017-12-25 15:19:06 +01:00
#if ENABLED(AUTO_BED_LEVELING_LINEAR)
ABL_VAR int16_t abl_points;
2017-12-25 15:19:06 +01:00
#elif ENABLED(PROBE_MANUALLY) // Bilinear
int16_t constexpr abl_points = GRID_MAX_POINTS;
2017-03-15 09:32:00 +01:00
#endif
#if ENABLED(AUTO_BED_LEVELING_BILINEAR)
ABL_VAR float zoffset;
#elif ENABLED(AUTO_BED_LEVELING_LINEAR)
ABL_VAR int indexIntoAB[GRID_MAX_POINTS_X][GRID_MAX_POINTS_Y];
2017-03-15 09:32:00 +01:00
2017-05-12 06:22:35 +02:00
ABL_VAR float eqnAMatrix[GRID_MAX_POINTS * 3], // "A" matrix of the linear system of equations
eqnBVector[GRID_MAX_POINTS], // "B" vector of Z points
mean;
2017-03-15 09:32:00 +01:00
#endif
#elif ENABLED(AUTO_BED_LEVELING_3POINT)
2017-12-25 15:19:06 +01:00
#if ENABLED(PROBE_MANUALLY)
int8_t constexpr abl_points = 3; // used to show total points
2017-12-25 15:19:06 +01:00
#endif
2017-06-04 14:39:31 +02:00
2017-03-15 09:32:00 +01:00
// Probe at 3 arbitrary points
ABL_VAR vector_3 points[3] = {
vector_3(PROBE_PT_1_X, PROBE_PT_1_Y, 0),
vector_3(PROBE_PT_2_X, PROBE_PT_2_Y, 0),
vector_3(PROBE_PT_3_X, PROBE_PT_3_Y, 0)
2017-03-15 09:32:00 +01:00
};
#endif // AUTO_BED_LEVELING_3POINT
#if ENABLED(AUTO_BED_LEVELING_LINEAR)
struct linear_fit_data lsf_results;
incremental_LSF_reset(&lsf_results);
#endif
2017-03-15 09:32:00 +01:00
/**
* On the initial G29 fetch command parameters.
*/
if (!g29_in_progress) {
#if ENABLED(DUAL_X_CARRIAGE)
if (active_extruder != 0) tool_change(0);
#endif
2017-04-18 21:39:57 +02:00
#if ENABLED(PROBE_MANUALLY) || ENABLED(AUTO_BED_LEVELING_LINEAR)
2017-05-26 00:38:07 +02:00
abl_probe_index = -1;
2017-04-18 21:39:57 +02:00
#endif
abl_should_enable = planner.leveling_active;
2017-03-15 09:32:00 +01:00
#if ENABLED(AUTO_BED_LEVELING_BILINEAR)
2018-02-01 10:19:30 +01:00
const bool seen_w = parser.seen('W');
if (seen_w) {
if (!leveling_is_valid()) {
2017-06-09 17:51:23 +02:00
SERIAL_ERROR_START();
2017-03-15 09:32:00 +01:00
SERIAL_ERRORLNPGM("No bilinear grid");
return;
}
2017-11-03 02:17:51 +01:00
const float rz = parser.seenval('Z') ? RAW_Z_POSITION(parser.value_linear_units()) : current_position[Z_AXIS];
if (!WITHIN(rz, -10, 10)) {
2017-06-09 17:51:23 +02:00
SERIAL_ERROR_START();
2017-03-15 09:32:00 +01:00
SERIAL_ERRORLNPGM("Bad Z value");
return;
}
2017-11-03 02:17:51 +01:00
const float rx = RAW_X_POSITION(parser.linearval('X', NAN)),
ry = RAW_Y_POSITION(parser.linearval('Y', NAN));
int8_t i = parser.byteval('I', -1),
j = parser.byteval('J', -1);
2017-03-15 09:32:00 +01:00
2017-11-03 02:17:51 +01:00
if (!isnan(rx) && !isnan(ry)) {
2017-12-25 15:19:06 +01:00
// Get nearest i / j from rx / ry
i = (rx - bilinear_start[X_AXIS] + 0.5f * xGridSpacing) / xGridSpacing;
j = (ry - bilinear_start[Y_AXIS] + 0.5f * yGridSpacing) / yGridSpacing;
i = constrain(i, 0, GRID_MAX_POINTS_X - 1);
j = constrain(j, 0, GRID_MAX_POINTS_Y - 1);
2017-03-15 09:32:00 +01:00
}
if (WITHIN(i, 0, GRID_MAX_POINTS_X - 1) && WITHIN(j, 0, GRID_MAX_POINTS_Y)) {
2017-03-15 09:32:00 +01:00
set_bed_leveling_enabled(false);
2017-11-03 02:17:51 +01:00
z_values[i][j] = rz;
2017-03-15 09:32:00 +01:00
#if ENABLED(ABL_BILINEAR_SUBDIVISION)
bed_level_virt_interpolate();
#endif
set_bed_leveling_enabled(abl_should_enable);
2017-12-25 15:19:06 +01:00
if (abl_should_enable) report_current_position();
2017-03-15 09:32:00 +01:00
}
return;
2017-05-20 10:03:08 +02:00
} // parser.seen('W')
2017-03-15 09:32:00 +01:00
2018-02-01 10:19:30 +01:00
#else
constexpr bool seen_w = false;
2017-03-15 09:32:00 +01:00
#endif
2017-12-25 15:19:06 +01:00
// Jettison bed leveling data
2018-02-01 10:19:30 +01:00
if (!seen_w && parser.seen('J')) {
2017-12-25 15:19:06 +01:00
reset_bed_level();
return;
}
2017-03-15 09:32:00 +01:00
verbose_level = parser.intval('V');
2017-03-15 09:32:00 +01:00
if (!WITHIN(verbose_level, 0, 4)) {
SERIAL_PROTOCOLLNPGM("?(V)erbose level is implausible (0-4).");
2017-03-15 09:32:00 +01:00
return;
}
dryrun = parser.boolval('D')
#if ENABLED(PROBE_MANUALLY)
|| no_action
#endif
;
2017-03-15 09:32:00 +01:00
#if ENABLED(AUTO_BED_LEVELING_LINEAR)
do_topography_map = verbose_level > 2 || parser.boolval('T');
// X and Y specify points in each direction, overriding the default
// These values may be saved with the completed mesh
abl_grid_points_x = parser.intval('X', GRID_MAX_POINTS_X);
abl_grid_points_y = parser.intval('Y', GRID_MAX_POINTS_Y);
2017-06-27 06:31:45 +02:00
if (parser.seenval('P')) abl_grid_points_x = abl_grid_points_y = parser.value_int();
2018-02-10 23:51:55 +01:00
if (!WITHIN(abl_grid_points_x, 2, GRID_MAX_POINTS_X)) {
SERIAL_PROTOCOLLNPGM("?Probe points (X) is implausible (2-" STRINGIFY(GRID_MAX_POINTS_X) ").");
return;
}
if (!WITHIN(abl_grid_points_y, 2, GRID_MAX_POINTS_Y)) {
SERIAL_PROTOCOLLNPGM("?Probe points (Y) is implausible (2-" STRINGIFY(GRID_MAX_POINTS_Y) ").");
return;
}
abl_points = abl_grid_points_x * abl_grid_points_y;
2017-12-25 15:19:06 +01:00
mean = 0;
2017-03-15 09:32:00 +01:00
#elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
zoffset = parser.linearval('Z');
#endif
2017-03-15 09:32:00 +01:00
#if ABL_GRID
xy_probe_feedrate_mm_s = MMM_TO_MMS(parser.linearval('S', XY_PROBE_SPEED));
left_probe_bed_position = parser.seenval('L') ? int(RAW_X_POSITION(parser.value_linear_units())) : LEFT_PROBE_BED_POSITION;
right_probe_bed_position = parser.seenval('R') ? int(RAW_X_POSITION(parser.value_linear_units())) : RIGHT_PROBE_BED_POSITION;
front_probe_bed_position = parser.seenval('F') ? int(RAW_Y_POSITION(parser.value_linear_units())) : FRONT_PROBE_BED_POSITION;
back_probe_bed_position = parser.seenval('B') ? int(RAW_Y_POSITION(parser.value_linear_units())) : BACK_PROBE_BED_POSITION;
if (
#if IS_SCARA || ENABLED(DELTA)
!position_is_reachable_by_probe(left_probe_bed_position, 0)
|| !position_is_reachable_by_probe(right_probe_bed_position, 0)
|| !position_is_reachable_by_probe(0, front_probe_bed_position)
|| !position_is_reachable_by_probe(0, back_probe_bed_position)
#else
!position_is_reachable_by_probe(left_probe_bed_position, front_probe_bed_position)
|| !position_is_reachable_by_probe(right_probe_bed_position, back_probe_bed_position)
#endif
) {
SERIAL_PROTOCOLLNPGM("? (L,R,F,B) out of bounds.");
2017-03-15 09:32:00 +01:00
return;
}
2017-03-15 09:32:00 +01:00
// probe at the points of a lattice grid
xGridSpacing = (right_probe_bed_position - left_probe_bed_position) / (abl_grid_points_x - 1);
yGridSpacing = (back_probe_bed_position - front_probe_bed_position) / (abl_grid_points_y - 1);
2017-03-15 09:32:00 +01:00
#endif // ABL_GRID
2017-03-15 09:32:00 +01:00
if (verbose_level > 0) {
2017-12-25 15:19:06 +01:00
SERIAL_PROTOCOLPGM("G29 Auto Bed Leveling");
if (dryrun) SERIAL_PROTOCOLPGM(" (DRYRUN)");
SERIAL_EOL();
2017-03-15 09:32:00 +01:00
}
planner.synchronize();
2017-12-25 13:29:12 +01:00
// Disable auto bed leveling during G29.
// Be formal so G29 can be done successively without G28.
2018-01-23 20:05:15 +01:00
if (!no_action) set_bed_leveling_enabled(false);
2017-03-15 09:32:00 +01:00
#if HAS_BED_PROBE
// Deploy the probe. Probe will raise if needed.
if (DEPLOY_PROBE()) {
2017-12-25 13:29:12 +01:00
set_bed_leveling_enabled(abl_should_enable);
2017-03-15 09:32:00 +01:00
return;
}
#endif
if (!faux) setup_for_endstop_or_probe_move();
2017-03-15 09:32:00 +01:00
#if ENABLED(AUTO_BED_LEVELING_BILINEAR)
#if ENABLED(PROBE_MANUALLY)
if (!no_action)
#endif
2016-09-27 09:38:38 +02:00
if ( xGridSpacing != bilinear_grid_spacing[X_AXIS]
|| yGridSpacing != bilinear_grid_spacing[Y_AXIS]
2017-11-03 02:17:51 +01:00
|| left_probe_bed_position != bilinear_start[X_AXIS]
|| front_probe_bed_position != bilinear_start[Y_AXIS]
2016-09-27 09:38:38 +02:00
) {
2016-12-14 08:50:28 +01:00
// Reset grid to 0.0 or "not probed". (Also disables ABL)
2016-10-07 00:00:53 +02:00
reset_bed_level();
2016-12-14 08:50:28 +01:00
2017-03-15 09:32:00 +01:00
// Initialize a grid with the given dimensions
bilinear_grid_spacing[X_AXIS] = xGridSpacing;
bilinear_grid_spacing[Y_AXIS] = yGridSpacing;
2017-11-03 02:17:51 +01:00
bilinear_start[X_AXIS] = left_probe_bed_position;
bilinear_start[Y_AXIS] = front_probe_bed_position;
2016-12-14 08:50:28 +01:00
2016-09-23 01:57:04 +02:00
// Can't re-enable (on error) until the new grid is written
abl_should_enable = false;
2016-09-23 01:57:04 +02:00
}
#endif // AUTO_BED_LEVELING_BILINEAR
2017-03-15 09:32:00 +01:00
#if ENABLED(AUTO_BED_LEVELING_3POINT)
2017-03-15 09:32:00 +01:00
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> 3-point Leveling");
#endif
2017-03-15 09:32:00 +01:00
// Probe at 3 arbitrary points
points[0].z = points[1].z = points[2].z = 0;
2017-03-15 09:32:00 +01:00
#endif // AUTO_BED_LEVELING_3POINT
2017-03-15 09:32:00 +01:00
} // !g29_in_progress
2016-09-15 20:56:56 +02:00
2017-03-15 09:32:00 +01:00
#if ENABLED(PROBE_MANUALLY)
2017-05-26 00:38:07 +02:00
// For manual probing, get the next index to probe now.
// On the first probe this will be incremented to 0.
if (!no_action) {
2017-05-26 00:38:07 +02:00
++abl_probe_index;
g29_in_progress = true;
}
// Abort current G29 procedure, go back to idle state
2017-05-26 00:38:07 +02:00
if (seenA && g29_in_progress) {
2017-03-15 09:32:00 +01:00
SERIAL_PROTOCOLLNPGM("Manual G29 aborted");
#if HAS_SOFTWARE_ENDSTOPS
soft_endstops_enabled = enable_soft_endstops;
#endif
2017-12-25 13:29:12 +01:00
set_bed_leveling_enabled(abl_should_enable);
2017-03-15 09:32:00 +01:00
g29_in_progress = false;
2017-05-25 22:13:57 +02:00
#if ENABLED(LCD_BED_LEVELING)
lcd_wait_for_move = false;
#endif
2017-03-15 09:32:00 +01:00
}
2017-03-15 09:32:00 +01:00
// Query G29 status
2017-05-26 00:38:07 +02:00
if (verbose_level || seenQ) {
2017-05-25 22:13:57 +02:00
SERIAL_PROTOCOLPGM("Manual G29 ");
if (g29_in_progress) {
SERIAL_PROTOCOLPAIR("point ", MIN(abl_probe_index + 1, abl_points));
SERIAL_PROTOCOLLNPAIR(" of ", abl_points);
}
2017-05-25 22:13:57 +02:00
else
SERIAL_PROTOCOLLNPGM("idle");
2017-03-15 09:32:00 +01:00
}
if (no_action) return;
2017-03-15 09:32:00 +01:00
if (abl_probe_index == 0) {
2017-04-18 21:39:57 +02:00
// For the initial G29 save software endstop state
2017-03-15 09:32:00 +01:00
#if HAS_SOFTWARE_ENDSTOPS
enable_soft_endstops = soft_endstops_enabled;
#endif
// Move close to the bed before the first point
do_blocking_move_to_z(0);
2017-03-15 09:32:00 +01:00
}
else {
#if ENABLED(AUTO_BED_LEVELING_LINEAR) || ENABLED(AUTO_BED_LEVELING_3POINT)
const uint16_t index = abl_probe_index - 1;
#endif
2017-03-15 09:32:00 +01:00
// For G29 after adjusting Z.
// Save the previous Z before going to the next point
measured_z = current_position[Z_AXIS];
#if ENABLED(AUTO_BED_LEVELING_LINEAR)
2017-07-13 05:47:23 +02:00
mean += measured_z;
eqnBVector[index] = measured_z;
eqnAMatrix[index + 0 * abl_points] = xProbe;
eqnAMatrix[index + 1 * abl_points] = yProbe;
eqnAMatrix[index + 2 * abl_points] = 1;
2017-03-15 09:32:00 +01:00
incremental_LSF(&lsf_results, xProbe, yProbe, measured_z);
#elif ENABLED(AUTO_BED_LEVELING_3POINT)
points[index].z = measured_z;
2017-03-15 09:32:00 +01:00
#elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
z_values[xCount][yCount] = measured_z + zoffset;
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) {
SERIAL_PROTOCOLPAIR("Save X", xCount);
SERIAL_PROTOCOLPAIR(" Y", yCount);
SERIAL_PROTOCOLLNPAIR(" Z", measured_z + zoffset);
}
#endif
2017-03-15 09:32:00 +01:00
#endif
}
//
// If there's another point to sample, move there with optional lift.
//
#if ABL_GRID
2017-05-26 00:38:07 +02:00
// Skip any unreachable points
while (abl_probe_index < abl_points) {
2017-03-15 09:32:00 +01:00
// Set xCount, yCount based on abl_probe_index, with zig-zag
PR_OUTER_VAR = abl_probe_index / PR_INNER_END;
PR_INNER_VAR = abl_probe_index - (PR_OUTER_VAR * PR_INNER_END);
2017-05-26 00:38:07 +02:00
// Probe in reverse order for every other row/column
bool zig = (PR_OUTER_VAR & 1); // != ((PR_OUTER_END) & 1);
2017-03-15 09:32:00 +01:00
if (zig) PR_INNER_VAR = (PR_INNER_END - 1) - PR_INNER_VAR;
2017-05-26 00:38:07 +02:00
const float xBase = xCount * xGridSpacing + left_probe_bed_position,
yBase = yCount * yGridSpacing + front_probe_bed_position;
xProbe = FLOOR(xBase + (xBase < 0 ? 0 : 0.5));
yProbe = FLOOR(yBase + (yBase < 0 ? 0 : 0.5));
#if ENABLED(AUTO_BED_LEVELING_LINEAR)
2017-03-15 09:32:00 +01:00
indexIntoAB[xCount][yCount] = abl_probe_index;
#endif
// Keep looping till a reachable point is found
2017-11-03 02:17:51 +01:00
if (position_is_reachable(xProbe, yProbe)) break;
2017-03-15 09:32:00 +01:00
++abl_probe_index;
}
// Is there a next point to move to?
if (abl_probe_index < abl_points) {
2017-03-15 09:32:00 +01:00
_manual_goto_xy(xProbe, yProbe); // Can be used here too!
#if HAS_SOFTWARE_ENDSTOPS
// Disable software endstops to allow manual adjustment
// If G29 is not completed, they will not be re-enabled
soft_endstops_enabled = false;
#endif
2017-03-15 09:32:00 +01:00
return;
}
else {
2017-05-26 00:38:07 +02:00
// Leveling done! Fall through to G29 finishing code below
2017-03-15 09:32:00 +01:00
SERIAL_PROTOCOLLNPGM("Grid probing done.");
2017-03-15 09:32:00 +01:00
// Re-enable software endstops, if needed
#if HAS_SOFTWARE_ENDSTOPS
soft_endstops_enabled = enable_soft_endstops;
2016-08-19 08:12:41 +02:00
#endif
2017-03-15 09:32:00 +01:00
}
2017-03-15 09:32:00 +01:00
#elif ENABLED(AUTO_BED_LEVELING_3POINT)
2017-03-15 09:32:00 +01:00
// Probe at 3 arbitrary points
if (abl_probe_index < abl_points) {
2017-11-03 02:17:51 +01:00
xProbe = points[abl_probe_index].x;
yProbe = points[abl_probe_index].y;
2017-12-25 15:19:06 +01:00
_manual_goto_xy(xProbe, yProbe);
2017-03-15 09:32:00 +01:00
#if HAS_SOFTWARE_ENDSTOPS
// Disable software endstops to allow manual adjustment
// If G29 is not completed, they will not be re-enabled
soft_endstops_enabled = false;
#endif
return;
}
else {
SERIAL_PROTOCOLLNPGM("3-point probing done.");
// Re-enable software endstops, if needed
#if HAS_SOFTWARE_ENDSTOPS
soft_endstops_enabled = enable_soft_endstops;
#endif
if (!dryrun) {
vector_3 planeNormal = vector_3::cross(points[0] - points[1], points[2] - points[1]).get_normal();
if (planeNormal.z < 0) {
planeNormal.x *= -1;
planeNormal.y *= -1;
planeNormal.z *= -1;
}
planner.bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
// Can't re-enable (on error) until the new grid is written
abl_should_enable = false;
2016-09-23 01:57:04 +02:00
}
2017-03-15 09:32:00 +01:00
}
2017-03-15 09:32:00 +01:00
#endif // AUTO_BED_LEVELING_3POINT
2017-03-15 09:32:00 +01:00
#else // !PROBE_MANUALLY
{
const ProbePtRaise raise_after = parser.boolval('E') ? PROBE_PT_STOW : PROBE_PT_RAISE;
2017-12-25 15:19:06 +01:00
measured_z = 0;
2017-03-15 09:32:00 +01:00
#if ABL_GRID
2017-03-15 09:32:00 +01:00
bool zig = PR_OUTER_END & 1; // Always end at RIGHT and BACK_PROBE_BED_POSITION
2016-06-24 05:22:28 +02:00
2017-11-07 00:16:15 +01:00
measured_z = 0;
2017-03-15 09:32:00 +01:00
// Outer loop is Y with PROBE_Y_FIRST disabled
for (uint8_t PR_OUTER_VAR = 0; PR_OUTER_VAR < PR_OUTER_END && !isnan(measured_z); PR_OUTER_VAR++) {
2015-07-10 01:57:44 +02:00
2017-03-15 09:32:00 +01:00
int8_t inStart, inStop, inInc;
2017-03-15 09:32:00 +01:00
if (zig) { // away from origin
inStart = 0;
inStop = PR_INNER_END;
inInc = 1;
}
else { // towards origin
inStart = PR_INNER_END - 1;
inStop = -1;
inInc = -1;
}
2017-04-09 14:58:47 +02:00
zig ^= true; // zag
2016-09-23 01:57:04 +02:00
2017-03-15 09:32:00 +01:00
// Inner loop is Y with PROBE_Y_FIRST enabled
for (int8_t PR_INNER_VAR = inStart; PR_INNER_VAR != inStop; PR_INNER_VAR += inInc) {
float xBase = left_probe_bed_position + xGridSpacing * xCount,
yBase = front_probe_bed_position + yGridSpacing * yCount;
xProbe = FLOOR(xBase + (xBase < 0 ? 0 : 0.5));
yProbe = FLOOR(yBase + (yBase < 0 ? 0 : 0.5));
2017-03-15 09:32:00 +01:00
#if ENABLED(AUTO_BED_LEVELING_LINEAR)
2017-05-26 00:38:07 +02:00
indexIntoAB[xCount][yCount] = ++abl_probe_index; // 0...
2017-03-15 09:32:00 +01:00
#endif
#if IS_KINEMATIC
// Avoid probing outside the round or hexagonal area
2017-11-03 02:17:51 +01:00
if (!position_is_reachable_by_probe(xProbe, yProbe)) continue;
2017-03-15 09:32:00 +01:00
#endif
measured_z = faux ? 0.001 * random(-100, 101) : probe_pt(xProbe, yProbe, raise_after, verbose_level);
2017-03-15 09:32:00 +01:00
if (isnan(measured_z)) {
2017-12-25 13:29:12 +01:00
set_bed_leveling_enabled(abl_should_enable);
break;
2017-03-15 09:32:00 +01:00
}
#if ENABLED(AUTO_BED_LEVELING_LINEAR)
mean += measured_z;
eqnBVector[abl_probe_index] = measured_z;
eqnAMatrix[abl_probe_index + 0 * abl_points] = xProbe;
eqnAMatrix[abl_probe_index + 1 * abl_points] = yProbe;
eqnAMatrix[abl_probe_index + 2 * abl_points] = 1;
2017-03-15 09:32:00 +01:00
incremental_LSF(&lsf_results, xProbe, yProbe, measured_z);
2017-03-15 09:32:00 +01:00
#elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
z_values[xCount][yCount] = measured_z + zoffset;
2017-03-15 09:32:00 +01:00
#endif
abl_should_enable = false;
idle();
} // inner
} // outer
#elif ENABLED(AUTO_BED_LEVELING_3POINT)
// Probe at 3 arbitrary points
for (uint8_t i = 0; i < 3; ++i) {
// Retain the last probe position
2017-11-03 02:17:51 +01:00
xProbe = points[i].x;
yProbe = points[i].y;
measured_z = faux ? 0.001 * random(-100, 101) : probe_pt(xProbe, yProbe, raise_after, verbose_level);
2017-05-16 01:32:26 +02:00
if (isnan(measured_z)) {
2017-12-25 13:29:12 +01:00
set_bed_leveling_enabled(abl_should_enable);
break;
2017-05-16 01:32:26 +02:00
}
points[i].z = measured_z;
2017-03-15 09:32:00 +01:00
}
2016-06-24 05:22:28 +02:00
if (!dryrun && !isnan(measured_z)) {
2017-03-15 09:32:00 +01:00
vector_3 planeNormal = vector_3::cross(points[0] - points[1], points[2] - points[1]).get_normal();
if (planeNormal.z < 0) {
planeNormal.x *= -1;
planeNormal.y *= -1;
planeNormal.z *= -1;
}
planner.bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
2016-06-24 05:22:28 +02:00
2017-03-15 09:32:00 +01:00
// Can't re-enable (on error) until the new grid is written
abl_should_enable = false;
}
#endif // AUTO_BED_LEVELING_3POINT
2016-09-23 01:57:04 +02:00
// Stow the probe. No raise for FIX_MOUNTED_PROBE.
2017-03-15 09:32:00 +01:00
if (STOW_PROBE()) {
2017-12-25 13:29:12 +01:00
set_bed_leveling_enabled(abl_should_enable);
measured_z = NAN;
2017-03-15 09:32:00 +01:00
}
}
2017-03-15 09:32:00 +01:00
#endif // !PROBE_MANUALLY
//
// G29 Finishing Code
2016-09-23 01:57:04 +02:00
//
// Unless this is a dry run, auto bed leveling will
2017-05-26 00:38:07 +02:00
// definitely be enabled after this point.
//
// If code above wants to continue leveling, it should
// return or loop before this point.
2016-09-23 01:57:04 +02:00
//
2016-06-24 05:22:28 +02:00
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) DEBUG_POS("> probing complete", current_position);
#endif
#if ENABLED(PROBE_MANUALLY)
g29_in_progress = false;
#if ENABLED(LCD_BED_LEVELING)
lcd_wait_for_move = false;
#endif
2017-05-25 22:13:57 +02:00
#endif
2016-06-24 05:22:28 +02:00
// Calculate leveling, print reports, correct the position
if (!isnan(measured_z)) {
#if ENABLED(AUTO_BED_LEVELING_BILINEAR)
if (!dryrun) extrapolate_unprobed_bed_level();
print_bilinear_leveling_grid();
refresh_bed_level();
#if ENABLED(ABL_BILINEAR_SUBDIVISION)
2017-07-24 01:47:11 +02:00
print_bilinear_leveling_grid_virt();
#endif
#elif ENABLED(AUTO_BED_LEVELING_LINEAR)
// For LINEAR leveling calculate matrix, print reports, correct the position
/**
* solve the plane equation ax + by + d = z
* A is the matrix with rows [x y 1] for all the probed points
* B is the vector of the Z positions
* the normal vector to the plane is formed by the coefficients of the
* plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
* so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
*/
float plane_equation_coefficients[3];
finish_incremental_LSF(&lsf_results);
plane_equation_coefficients[0] = -lsf_results.A; // We should be able to eliminate the '-' on these three lines and down below
plane_equation_coefficients[1] = -lsf_results.B; // but that is not yet tested.
plane_equation_coefficients[2] = -lsf_results.D;
mean /= abl_points;
if (verbose_level) {
SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
SERIAL_PROTOCOL_F(plane_equation_coefficients[0], 8);
SERIAL_PROTOCOLPGM(" b: ");
SERIAL_PROTOCOL_F(plane_equation_coefficients[1], 8);
SERIAL_PROTOCOLPGM(" d: ");
SERIAL_PROTOCOL_F(plane_equation_coefficients[2], 8);
2017-06-09 17:51:23 +02:00
SERIAL_EOL();
if (verbose_level > 2) {
SERIAL_PROTOCOLPGM("Mean of sampled points: ");
SERIAL_PROTOCOL_F(mean, 8);
SERIAL_EOL();
}
}
// Create the matrix but don't correct the position yet
if (!dryrun)
planner.bed_level_matrix = matrix_3x3::create_look_at(
vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1) // We can eliminate the '-' here and up above
);
// Show the Topography map if enabled
if (do_topography_map) {
SERIAL_PROTOCOLLNPGM("\nBed Height Topography:\n"
" +--- BACK --+\n"
" | |\n"
" L | (+) | R\n"
" E | | I\n"
" F | (-) N (+) | G\n"
" T | | H\n"
" | (-) | T\n"
" | |\n"
" O-- FRONT --+\n"
" (0,0)");
float min_diff = 999;
2016-09-15 20:56:56 +02:00
for (int8_t yy = abl_grid_points_y - 1; yy >= 0; yy--) {
for (uint8_t xx = 0; xx < abl_grid_points_x; xx++) {
int ind = indexIntoAB[xx][yy];
float diff = eqnBVector[ind] - mean,
x_tmp = eqnAMatrix[ind + 0 * abl_points],
y_tmp = eqnAMatrix[ind + 1 * abl_points],
z_tmp = 0;
2016-04-28 03:06:32 +02:00
apply_rotation_xyz(planner.bed_level_matrix, x_tmp, y_tmp, z_tmp);
NOMORE(min_diff, eqnBVector[ind] - z_tmp);
if (diff >= 0.0)
SERIAL_PROTOCOLPGM(" +"); // Include + for column alignment
else
2015-04-04 06:43:30 +02:00
SERIAL_PROTOCOLCHAR(' ');
SERIAL_PROTOCOL_F(diff, 5);
} // xx
2017-06-09 17:51:23 +02:00
SERIAL_EOL();
} // yy
2017-06-09 17:51:23 +02:00
SERIAL_EOL();
if (verbose_level > 3) {
SERIAL_PROTOCOLLNPGM("\nCorrected Bed Height vs. Bed Topology:");
for (int8_t yy = abl_grid_points_y - 1; yy >= 0; yy--) {
for (uint8_t xx = 0; xx < abl_grid_points_x; xx++) {
int ind = indexIntoAB[xx][yy];
float x_tmp = eqnAMatrix[ind + 0 * abl_points],
y_tmp = eqnAMatrix[ind + 1 * abl_points],
z_tmp = 0;
apply_rotation_xyz(planner.bed_level_matrix, x_tmp, y_tmp, z_tmp);
float diff = eqnBVector[ind] - z_tmp - min_diff;
if (diff >= 0.0)
SERIAL_PROTOCOLPGM(" +");
// Include + for column alignment
else
SERIAL_PROTOCOLCHAR(' ');
SERIAL_PROTOCOL_F(diff, 5);
} // xx
SERIAL_EOL();
} // yy
SERIAL_EOL();
}
} //do_topography_map
2016-09-20 11:46:41 +02:00
#endif // AUTO_BED_LEVELING_LINEAR
2016-09-20 11:46:41 +02:00
#if ABL_PLANAR
// For LINEAR and 3POINT leveling correct the current position
if (verbose_level > 0)
planner.bed_level_matrix.debug(PSTR("\n\nBed Level Correction Matrix:"));
if (!dryrun) {
//
// Correct the current XYZ position based on the tilted plane.
//
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) DEBUG_POS("G29 uncorrected XYZ", current_position);
#endif
2015-07-10 01:57:44 +02:00
float converted[XYZ];
COPY(converted, current_position);
2016-03-27 05:36:36 +02:00
planner.leveling_active = true;
planner.unapply_leveling(converted); // use conversion machinery
planner.leveling_active = false;
// Use the last measured distance to the bed, if possible
if ( NEAR(current_position[X_AXIS], xProbe - (X_PROBE_OFFSET_FROM_EXTRUDER))
&& NEAR(current_position[Y_AXIS], yProbe - (Y_PROBE_OFFSET_FROM_EXTRUDER))
) {
const float simple_z = current_position[Z_AXIS] - measured_z;
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) {
SERIAL_ECHOPAIR("Z from Probe:", simple_z);
SERIAL_ECHOPAIR(" Matrix:", converted[Z_AXIS]);
SERIAL_ECHOLNPAIR(" Discrepancy:", simple_z - converted[Z_AXIS]);
}
#endif
converted[Z_AXIS] = simple_z;
}
2016-03-27 05:36:36 +02:00
// The rotated XY and corrected Z are now current_position
COPY(current_position, converted);
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) DEBUG_POS("G29 corrected XYZ", current_position);
#endif
}
2015-07-10 01:57:44 +02:00
#elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
if (!dryrun) {
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPAIR("G29 uncorrected Z:", current_position[Z_AXIS]);
#endif
// Unapply the offset because it is going to be immediately applied
// and cause compensation movement in Z
current_position[Z_AXIS] -= bilinear_z_offset(current_position);
2016-09-26 07:11:27 +02:00
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPAIR(" corrected Z:", current_position[Z_AXIS]);
#endif
}
2016-09-26 07:11:27 +02:00
#endif // ABL_PLANAR
2016-09-26 07:11:27 +02:00
#ifdef Z_PROBE_END_SCRIPT
2016-09-26 07:11:27 +02:00
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPAIR("Z Probe End Script: ", Z_PROBE_END_SCRIPT);
2016-09-26 07:11:27 +02:00
#endif
planner.synchronize();
enqueue_and_echo_commands_P(PSTR(Z_PROBE_END_SCRIPT));
2015-07-10 01:57:44 +02:00
#endif
2016-09-26 07:11:27 +02:00
// Auto Bed Leveling is complete! Enable if possible.
planner.leveling_active = dryrun ? abl_should_enable : true;
} // !isnan(measured_z)
// Restore state after probing
if (!faux) clean_up_after_endstop_or_probe_move();
2015-07-10 01:57:44 +02:00
2015-08-05 13:40:36 +02:00
#if ENABLED(DEBUG_LEVELING_FEATURE)
2017-12-25 15:19:06 +01:00
if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< G29");
2015-07-10 01:57:44 +02:00
#endif
KEEPALIVE_STATE(IN_HANDLER);
2016-09-23 01:57:04 +02:00
if (planner.leveling_active)
SYNC_PLAN_POSITION_KINEMATIC();
2018-04-30 09:59:11 +02:00
#if HAS_BED_PROBE && defined(Z_AFTER_PROBING)
move_z_after_probing();
#endif
report_current_position();
}
2017-10-14 03:47:44 +02:00
#endif // OLDSCHOOL_ABL
2016-06-21 00:50:51 +02:00
#if HAS_BED_PROBE
2016-06-21 00:50:51 +02:00
/**
* G30: Do a single Z probe at the current XY
2017-04-29 00:17:01 +02:00
*
* Parameters:
*
* X Probe X position (default current X)
* Y Probe Y position (default current Y)
2018-05-23 23:21:09 +02:00
* E Engage the probe for each probe (default 1)
2016-06-21 00:50:51 +02:00
*/
inline void gcode_G30() {
const float xpos = parser.linearval('X', current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER),
ypos = parser.linearval('Y', current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER);
2017-11-03 02:17:51 +01:00
if (!position_is_reachable_by_probe(xpos, ypos)) return;
2016-09-29 08:00:34 +02:00
// Disable leveling so the planner won't mess with us
2017-05-01 23:13:09 +02:00
#if HAS_LEVELING
2016-09-29 08:00:34 +02:00
set_bed_leveling_enabled(false);
#endif
2016-06-22 00:32:28 +02:00
setup_for_endstop_or_probe_move();
2016-06-21 01:18:30 +02:00
2018-05-23 23:21:09 +02:00
const ProbePtRaise raise_after = parser.boolval('E', true) ? PROBE_PT_STOW : PROBE_PT_NONE;
const float measured_z = probe_pt(xpos, ypos, raise_after, parser.intval('V', 1));
2017-05-16 01:32:26 +02:00
if (!isnan(measured_z)) {
SERIAL_PROTOCOLPAIR_F("Bed X: ", xpos);
SERIAL_PROTOCOLPAIR_F(" Y: ", ypos);
SERIAL_PROTOCOLLNPAIR_F(" Z: ", measured_z);
2017-05-16 01:32:26 +02:00
}
2016-06-22 00:32:28 +02:00
clean_up_after_endstop_or_probe_move();
2016-06-21 01:18:30 +02:00
2018-04-30 09:59:11 +02:00
#ifdef Z_AFTER_PROBING
2018-03-21 00:04:22 +01:00
if (raise_after == PROBE_PT_STOW) move_z_after_probing();
#endif
2016-06-21 00:50:51 +02:00
report_current_position();
}
2016-06-24 02:04:13 +02:00
#if ENABLED(Z_PROBE_SLED)
/**
* G31: Deploy the Z probe
*/
inline void gcode_G31() { DEPLOY_PROBE(); }
2016-06-24 02:04:13 +02:00
/**
* G32: Stow the Z probe
*/
inline void gcode_G32() { STOW_PROBE(); }
2016-06-24 02:04:13 +02:00
#endif // Z_PROBE_SLED
2017-07-03 17:06:23 +02:00
#endif // HAS_BED_PROBE
2017-11-08 02:47:45 +01:00
#if ENABLED(DELTA_AUTO_CALIBRATION)
constexpr uint8_t _7P_STEP = 1, // 7-point step - to change number of calibration points
_4P_STEP = _7P_STEP * 2, // 4-point step
NPP = _7P_STEP * 6; // number of calibration points on the radius
enum CalEnum : char { // the 7 main calibration points - add definitions if needed
2017-11-08 02:47:45 +01:00
CEN = 0,
__A = 1,
_AB = __A + _7P_STEP,
__B = _AB + _7P_STEP,
_BC = __B + _7P_STEP,
__C = _BC + _7P_STEP,
_CA = __C + _7P_STEP,
};
#define LOOP_CAL_PT(VAR, S, N) for (uint8_t VAR=S; VAR<=NPP; VAR+=N)
#define F_LOOP_CAL_PT(VAR, S, N) for (float VAR=S; VAR<NPP+0.9999; VAR+=N)
#define I_LOOP_CAL_PT(VAR, S, N) for (float VAR=S; VAR>CEN+0.9999; VAR-=N)
#define LOOP_CAL_ALL(VAR) LOOP_CAL_PT(VAR, CEN, 1)
#define LOOP_CAL_RAD(VAR) LOOP_CAL_PT(VAR, __A, _7P_STEP)
#define LOOP_CAL_ACT(VAR, _4P, _OP) LOOP_CAL_PT(VAR, _OP ? _AB : __A, _4P ? _4P_STEP : _7P_STEP)
#if HOTENDS > 1
const uint8_t old_tool_index = active_extruder;
#define AC_CLEANUP() ac_cleanup(old_tool_index)
#else
#define AC_CLEANUP() ac_cleanup()
#endif
float lcd_probe_pt(const float &rx, const float &ry);
void ac_home() {
endstops.enable(true);
home_delta();
endstops.not_homing();
}
void ac_setup(const bool reset_bed) {
#if HOTENDS > 1
tool_change(0, 0, true);
#endif
planner.synchronize();
setup_for_endstop_or_probe_move();
#if HAS_LEVELING
if (reset_bed) reset_bed_level(); // After full calibration bed-level data is no longer valid
#endif
}
void ac_cleanup(
#if HOTENDS > 1
const uint8_t old_tool_index
#endif
) {
#if ENABLED(DELTA_HOME_TO_SAFE_ZONE)
do_blocking_move_to_z(delta_clip_start_height);
#endif
#if HAS_BED_PROBE
STOW_PROBE();
#endif
clean_up_after_endstop_or_probe_move();
#if HOTENDS > 1
tool_change(old_tool_index, 0, true);
#endif
}
void print_signed_float(const char * const prefix, const float &f) {
2017-11-08 02:47:45 +01:00
SERIAL_PROTOCOLPGM(" ");
serialprintPGM(prefix);
SERIAL_PROTOCOLCHAR(':');
if (f >= 0) SERIAL_CHAR('+');
SERIAL_PROTOCOL_F(f, 2);
}
2017-06-12 08:25:40 +02:00
/**
* - Print the delta settings
*/
static void print_calibration_settings(const bool end_stops, const bool tower_angles) {
SERIAL_PROTOCOLPAIR(".Height:", delta_height);
2017-11-08 02:47:45 +01:00
if (end_stops) {
print_signed_float(PSTR("Ex"), delta_endstop_adj[A_AXIS]);
print_signed_float(PSTR("Ey"), delta_endstop_adj[B_AXIS]);
print_signed_float(PSTR("Ez"), delta_endstop_adj[C_AXIS]);
}
if (end_stops && tower_angles) {
SERIAL_PROTOCOLPAIR(" Radius:", delta_radius);
SERIAL_EOL();
2017-11-08 02:47:45 +01:00
SERIAL_CHAR('.');
SERIAL_PROTOCOL_SP(13);
}
if (tower_angles) {
print_signed_float(PSTR("Tx"), delta_tower_angle_trim[A_AXIS]);
print_signed_float(PSTR("Ty"), delta_tower_angle_trim[B_AXIS]);
print_signed_float(PSTR("Tz"), delta_tower_angle_trim[C_AXIS]);
}
2017-11-08 02:47:45 +01:00
if ((!end_stops && tower_angles) || (end_stops && !tower_angles)) { // XOR
SERIAL_PROTOCOLPAIR(" Radius:", delta_radius);
}
#if HAS_BED_PROBE
if (!end_stops && !tower_angles) {
SERIAL_PROTOCOL_SP(30);
print_signed_float(PSTR("Offset"), zprobe_zoffset);
}
#endif
2017-11-08 02:47:45 +01:00
SERIAL_EOL();
}
/**
* - Print the probe results
*/
static void print_calibration_results(const float z_pt[NPP + 1], const bool tower_points, const bool opposite_points) {
2017-11-08 02:47:45 +01:00
SERIAL_PROTOCOLPGM(". ");
print_signed_float(PSTR("c"), z_pt[CEN]);
2017-11-08 02:47:45 +01:00
if (tower_points) {
print_signed_float(PSTR(" x"), z_pt[__A]);
print_signed_float(PSTR(" y"), z_pt[__B]);
print_signed_float(PSTR(" z"), z_pt[__C]);
2017-11-08 02:47:45 +01:00
}
if (tower_points && opposite_points) {
SERIAL_EOL();
2017-11-08 02:47:45 +01:00
SERIAL_CHAR('.');
SERIAL_PROTOCOL_SP(13);
2017-07-07 09:43:33 +02:00
}
2017-11-08 02:47:45 +01:00
if (opposite_points) {
print_signed_float(PSTR("yz"), z_pt[_BC]);
print_signed_float(PSTR("zx"), z_pt[_CA]);
print_signed_float(PSTR("xy"), z_pt[_AB]);
2017-08-11 23:48:01 +02:00
}
2017-11-08 02:47:45 +01:00
SERIAL_EOL();
}
2017-08-11 23:48:01 +02:00
2017-11-08 02:47:45 +01:00
/**
* - Calculate the standard deviation from the zero plane
2017-11-08 02:47:45 +01:00
*/
static float std_dev_points(float z_pt[NPP + 1], const bool _0p_cal, const bool _1p_cal, const bool _4p_cal, const bool _4p_opp) {
if (!_0p_cal) {
float S2 = sq(z_pt[CEN]);
int16_t N = 1;
if (!_1p_cal) { // std dev from zero plane
LOOP_CAL_ACT(rad, _4p_cal, _4p_opp) {
S2 += sq(z_pt[rad]);
N++;
}
return LROUND(SQRT(S2 / N) * 1000.0) / 1000.0 + 0.00001;
}
}
return 0.00001;
2017-11-08 02:47:45 +01:00
}
/**
* - Probe a point
*/
static float calibration_probe(const float &nx, const float &ny, const bool stow, const bool set_up) {
2017-11-25 23:01:55 +01:00
#if HAS_BED_PROBE
return probe_pt(nx, ny, set_up ? PROBE_PT_BIG_RAISE : stow ? PROBE_PT_STOW : PROBE_PT_RAISE, 0, false);
2017-11-25 23:01:55 +01:00
#else
UNUSED(stow);
UNUSED(set_up);
2017-11-25 23:01:55 +01:00
return lcd_probe_pt(nx, ny);
#endif
2017-11-24 14:42:40 +01:00
}
2018-08-12 05:33:33 +02:00
#if HAS_BED_PROBE && ENABLED(ULTIPANEL)
static float probe_z_shift(const float center) {
STOW_PROBE();
endstops.enable_z_probe(false);
float z_shift = lcd_probe_pt(0, 0) - center;
endstops.enable_z_probe(true);
return z_shift;
}
#endif
/**
* - Probe a grid
*/
static bool probe_calibration_points(float z_pt[NPP + 1], const int8_t probe_points, const bool towers_set, const bool stow_after_each, const bool set_up) {
2017-11-08 02:47:45 +01:00
const bool _0p_calibration = probe_points == 0,
_1p_calibration = probe_points == 1 || probe_points == -1,
2017-11-08 02:47:45 +01:00
_4p_calibration = probe_points == 2,
_4p_opposite_points = _4p_calibration && !towers_set,
_7p_calibration = probe_points >= 3,
2017-11-08 02:47:45 +01:00
_7p_no_intermediates = probe_points == 3,
_7p_1_intermediates = probe_points == 4,
_7p_2_intermediates = probe_points == 5,
_7p_4_intermediates = probe_points == 6,
_7p_6_intermediates = probe_points == 7,
_7p_8_intermediates = probe_points == 8,
_7p_11_intermediates = probe_points == 9,
_7p_14_intermediates = probe_points == 10,
_7p_intermed_points = probe_points >= 4,
_7p_6_center = probe_points >= 5 && probe_points <= 7,
_7p_9_center = probe_points >= 8;
LOOP_CAL_ALL(rad) z_pt[rad] = 0.0;
2017-11-03 10:06:38 +01:00
2017-11-08 02:47:45 +01:00
if (!_0p_calibration) {
if (!_7p_no_intermediates && !_7p_4_intermediates && !_7p_11_intermediates) { // probe the center
z_pt[CEN] += calibration_probe(0, 0, stow_after_each, set_up);
if (isnan(z_pt[CEN])) return false;
2017-11-08 02:47:45 +01:00
}
if (_7p_calibration) { // probe extra center points
2018-06-30 06:20:33 +02:00
const float start = _7p_9_center ? float(_CA) + _7P_STEP / 3.0 : _7p_6_center ? float(_CA) : float(__C),
steps = _7p_9_center ? _4P_STEP / 3.0 : _7p_6_center ? _7P_STEP : _4P_STEP;
I_LOOP_CAL_PT(rad, start, steps) {
const float a = RADIANS(210 + (360 / NPP) * (rad - 1)),
2017-11-08 02:47:45 +01:00
r = delta_calibration_radius * 0.1;
z_pt[CEN] += calibration_probe(cos(a) * r, sin(a) * r, stow_after_each, set_up);
if (isnan(z_pt[CEN])) return false;
2017-11-24 14:42:40 +01:00
}
z_pt[CEN] /= float(_7p_2_intermediates ? 7 : probe_points);
2017-11-08 02:47:45 +01:00
}
2017-11-08 02:47:45 +01:00
if (!_1p_calibration) { // probe the radius
const CalEnum start = _4p_opposite_points ? _AB : __A;
const float steps = _7p_14_intermediates ? _7P_STEP / 15.0 : // 15r * 6 + 10c = 100
_7p_11_intermediates ? _7P_STEP / 12.0 : // 12r * 6 + 9c = 81
_7p_8_intermediates ? _7P_STEP / 9.0 : // 9r * 6 + 10c = 64
_7p_6_intermediates ? _7P_STEP / 7.0 : // 7r * 6 + 7c = 49
_7p_4_intermediates ? _7P_STEP / 5.0 : // 5r * 6 + 6c = 36
_7p_2_intermediates ? _7P_STEP / 3.0 : // 3r * 6 + 7c = 25
_7p_1_intermediates ? _7P_STEP / 2.0 : // 2r * 6 + 4c = 16
_7p_no_intermediates ? _7P_STEP : // 1r * 6 + 3c = 9
_4P_STEP; // .5r * 6 + 1c = 4
bool zig_zag = true;
F_LOOP_CAL_PT(rad, start, _7p_9_center ? steps * 3 : steps) {
const int8_t offset = _7p_9_center ? 2 : 0;
for (int8_t circle = 0; circle <= offset; circle++) {
const float a = RADIANS(210 + (360 / NPP) * (rad - 1)),
r = delta_calibration_radius * (1 - 0.1 * (zig_zag ? offset - circle : circle)),
interpol = fmod(rad, 1);
const float z_temp = calibration_probe(cos(a) * r, sin(a) * r, stow_after_each, set_up);
if (isnan(z_temp)) return false;
2017-11-08 02:47:45 +01:00
// split probe point to neighbouring calibration points
z_pt[uint8_t(LROUND(rad - interpol + NPP - 1)) % NPP + 1] += z_temp * sq(cos(RADIANS(interpol * 90)));
z_pt[uint8_t(LROUND(rad - interpol)) % NPP + 1] += z_temp * sq(sin(RADIANS(interpol * 90)));
}
2017-11-08 02:47:45 +01:00
zig_zag = !zig_zag;
}
2017-11-08 02:47:45 +01:00
if (_7p_intermed_points)
LOOP_CAL_RAD(rad)
z_pt[rad] /= _7P_STEP / steps;
do_blocking_move_to_xy(0.0, 0.0);
}
}
return true;
2017-11-08 02:47:45 +01:00
}
/**
* kinematics routines and auto tune matrix scaling parameters:
2018-04-28 18:24:58 +02:00
* see https://github.com/LVD-AC/Marlin-AC/tree/1.1.x-AC/documentation for
* - formulae for approximative forward kinematics in the end-stop displacement matrix
* - definition of the matrix scaling parameters
*/
static void reverse_kinematics_probe_points(float z_pt[NPP + 1], float mm_at_pt_axis[NPP + 1][ABC]) {
float pos[XYZ] = { 0.0 };
LOOP_CAL_ALL(rad) {
const float a = RADIANS(210 + (360 / NPP) * (rad - 1)),
r = (rad == CEN ? 0.0 : delta_calibration_radius);
pos[X_AXIS] = cos(a) * r;
pos[Y_AXIS] = sin(a) * r;
pos[Z_AXIS] = z_pt[rad];
inverse_kinematics(pos);
2018-04-28 18:24:58 +02:00
LOOP_XYZ(axis) mm_at_pt_axis[rad][axis] = delta[axis];
}
2017-11-08 02:47:45 +01:00
}
static void forward_kinematics_probe_points(float mm_at_pt_axis[NPP + 1][ABC], float z_pt[NPP + 1]) {
const float r_quot = delta_calibration_radius / delta_radius;
#define ZPP(N,I,A) ((1 / 3.0 + r_quot * (N) / 3.0 ) * mm_at_pt_axis[I][A])
#define Z00(I, A) ZPP( 0, I, A)
#define Zp1(I, A) ZPP(+1, I, A)
#define Zm1(I, A) ZPP(-1, I, A)
#define Zp2(I, A) ZPP(+2, I, A)
#define Zm2(I, A) ZPP(-2, I, A)
z_pt[CEN] = Z00(CEN, A_AXIS) + Z00(CEN, B_AXIS) + Z00(CEN, C_AXIS);
z_pt[__A] = Zp2(__A, A_AXIS) + Zm1(__A, B_AXIS) + Zm1(__A, C_AXIS);
z_pt[__B] = Zm1(__B, A_AXIS) + Zp2(__B, B_AXIS) + Zm1(__B, C_AXIS);
z_pt[__C] = Zm1(__C, A_AXIS) + Zm1(__C, B_AXIS) + Zp2(__C, C_AXIS);
z_pt[_BC] = Zm2(_BC, A_AXIS) + Zp1(_BC, B_AXIS) + Zp1(_BC, C_AXIS);
z_pt[_CA] = Zp1(_CA, A_AXIS) + Zm2(_CA, B_AXIS) + Zp1(_CA, C_AXIS);
z_pt[_AB] = Zp1(_AB, A_AXIS) + Zp1(_AB, B_AXIS) + Zm2(_AB, C_AXIS);
}
static void calc_kinematics_diff_probe_points(float z_pt[NPP + 1], float delta_e[ABC], float delta_r, float delta_t[ABC]) {
const float z_center = z_pt[CEN];
float diff_mm_at_pt_axis[NPP + 1][ABC],
new_mm_at_pt_axis[NPP + 1][ABC];
reverse_kinematics_probe_points(z_pt, diff_mm_at_pt_axis);
delta_radius += delta_r;
LOOP_XYZ(axis) delta_tower_angle_trim[axis] += delta_t[axis];
recalc_delta_settings();
reverse_kinematics_probe_points(z_pt, new_mm_at_pt_axis);
2017-11-08 02:47:45 +01:00
LOOP_XYZ(axis) LOOP_CAL_ALL(rad) diff_mm_at_pt_axis[rad][axis] -= new_mm_at_pt_axis[rad][axis] + delta_e[axis];
forward_kinematics_probe_points(diff_mm_at_pt_axis, z_pt);
LOOP_CAL_RAD(rad) z_pt[rad] -= z_pt[CEN] - z_center;
z_pt[CEN] = z_center;
2017-11-08 02:47:45 +01:00
delta_radius -= delta_r;
LOOP_XYZ(axis) delta_tower_angle_trim[axis] -= delta_t[axis];
recalc_delta_settings();
}
static float auto_tune_h() {
const float r_quot = delta_calibration_radius / delta_radius;
float h_fac = 0.0;
h_fac = r_quot / (2.0 / 3.0);
h_fac = 1.0f / h_fac; // (2/3)/CR
return h_fac;
}
static float auto_tune_r() {
const float diff = 0.01;
float r_fac = 0.0,
z_pt[NPP + 1] = { 0.0 },
delta_e[ABC] = {0.0},
delta_r = {0.0},
delta_t[ABC] = {0.0};
delta_r = diff;
2018-04-28 18:24:58 +02:00
calc_kinematics_diff_probe_points(z_pt, delta_e, delta_r, delta_t);
r_fac = -(z_pt[__A] + z_pt[__B] + z_pt[__C] + z_pt[_BC] + z_pt[_CA] + z_pt[_AB]) / 6.0;
r_fac = diff / r_fac / 3.0; // 1/(3*delta_Z)
return r_fac;
}
static float auto_tune_a() {
const float diff = 0.01;
float a_fac = 0.0,
z_pt[NPP + 1] = { 0.0 },
delta_e[ABC] = {0.0},
delta_r = {0.0},
delta_t[ABC] = {0.0};
LOOP_XYZ(axis) {
LOOP_XYZ(axis_2) delta_t[axis_2] = 0.0;
delta_t[axis] = diff;
2018-04-28 18:24:58 +02:00
calc_kinematics_diff_probe_points(z_pt, delta_e, delta_r, delta_t);
a_fac += z_pt[uint8_t((axis * _4P_STEP) - _7P_STEP + NPP) % NPP + 1] / 6.0;
a_fac -= z_pt[uint8_t((axis * _4P_STEP) + 1 + _7P_STEP)] / 6.0;
2017-11-08 02:47:45 +01:00
}
a_fac = diff / a_fac / 3.0; // 1/(3*delta_Z)
return a_fac;
}
2017-06-26 12:25:57 +02:00
2017-11-08 02:47:45 +01:00
/**
* G33 - Delta '1-4-7-point' Auto-Calibration
* Calibrate height, z_offset, endstops, delta radius, and tower angles.
2017-11-08 02:47:45 +01:00
*
* Parameters:
*
* S Setup mode; disables probe protection
*
2017-11-08 02:47:45 +01:00
* Pn Number of probe points:
* P-1 Checks the z_offset with a center probe and paper test.
* P0 Normalizes calibration.
* P1 Calibrates height only with center probe.
* P2 Probe center and towers. Calibrate height, endstops and delta radius.
* P3 Probe all positions: center, towers and opposite towers. Calibrate all.
* P4-P10 Probe all positions at different intermediate locations and average them.
2017-11-08 02:47:45 +01:00
*
* T Don't calibrate tower angle corrections
*
* Cn.nn Calibration precision; when omitted calibrates to maximum precision
*
2018-03-16 07:26:32 +01:00
* Fn Force to run at least n iterations and take the best result
2017-11-08 02:47:45 +01:00
*
* Vn Verbose level:
* V0 Dry-run mode. Report settings and probe results. No calibration.
2017-11-24 14:42:40 +01:00
* V1 Report start and end settings only
* V2 Report settings at each iteration
* V3 Report settings and probe results
2017-11-08 02:47:45 +01:00
*
* E Engage the probe for each point
*/
inline void gcode_G33() {
const bool set_up =
#if HAS_BED_PROBE
parser.seen('S');
#else
false;
#endif
2017-08-11 23:48:01 +02:00
const int8_t probe_points = set_up ? 2 : parser.intval('P', DELTA_CALIBRATION_DEFAULT_POINTS);
if (!WITHIN(probe_points, -1, 10)) {
SERIAL_PROTOCOLLNPGM("?(P)oints is implausible (-1 - 10).");
2017-11-08 02:47:45 +01:00
return;
}
2017-08-11 23:48:01 +02:00
const bool towers_set = !parser.seen('T');
const float calibration_precision = set_up ? Z_CLEARANCE_BETWEEN_PROBES / 5.0 : parser.floatval('C', 0.0);
2017-11-08 02:47:45 +01:00
if (calibration_precision < 0) {
SERIAL_PROTOCOLLNPGM("?(C)alibration precision is implausible (>=0).");
return;
}
const int8_t force_iterations = parser.intval('F', 0);
if (!WITHIN(force_iterations, 0, 30)) {
SERIAL_PROTOCOLLNPGM("?(F)orce iteration is implausible (0 - 30).");
2017-11-08 02:47:45 +01:00
return;
}
const int8_t verbose_level = parser.byteval('V', 1);
if (!WITHIN(verbose_level, 0, 3)) {
SERIAL_PROTOCOLLNPGM("?(V)erbose level is implausible (0 - 3).");
2017-11-08 02:47:45 +01:00
return;
}
const bool stow_after_each = parser.seen('E');
if (set_up) {
delta_height = 999.99;
delta_radius = DELTA_PRINTABLE_RADIUS;
ZERO(delta_endstop_adj);
ZERO(delta_tower_angle_trim);
recalc_delta_settings();
}
const bool _0p_calibration = probe_points == 0,
_1p_calibration = probe_points == 1 || probe_points == -1,
2017-11-08 02:47:45 +01:00
_4p_calibration = probe_points == 2,
_4p_opposite_points = _4p_calibration && !towers_set,
_7p_9_center = probe_points >= 8,
_tower_results = (_4p_calibration && towers_set) || probe_points >= 3,
_opposite_results = (_4p_calibration && !towers_set) || probe_points >= 3,
_endstop_results = probe_points != 1 && probe_points != -1 && probe_points != 0,
_angle_results = probe_points >= 3 && towers_set;
static const char save_message[] PROGMEM = "Save with M500 and/or copy to Configuration.h";
2017-11-08 02:47:45 +01:00
int8_t iterations = 0;
float test_precision,
zero_std_dev = (verbose_level ? 999.0 : 0.0), // 0.0 in dry-run mode : forced end
zero_std_dev_min = zero_std_dev,
zero_std_dev_old = zero_std_dev,
h_factor,
r_factor,
a_factor,
2017-11-08 02:47:45 +01:00
e_old[ABC] = {
delta_endstop_adj[A_AXIS],
delta_endstop_adj[B_AXIS],
delta_endstop_adj[C_AXIS]
},
r_old = delta_radius,
h_old = delta_height,
a_old[ABC] = {
2017-11-08 02:47:45 +01:00
delta_tower_angle_trim[A_AXIS],
delta_tower_angle_trim[B_AXIS],
delta_tower_angle_trim[C_AXIS]
};
SERIAL_PROTOCOLLNPGM("G33 Auto Calibrate");
if (!_1p_calibration && !_0p_calibration) { // test if the outer radius is reachable
2017-11-08 02:47:45 +01:00
LOOP_CAL_RAD(axis) {
const float a = RADIANS(210 + (360 / NPP) * (axis - 1)),
r = delta_calibration_radius;
2017-11-08 02:47:45 +01:00
if (!position_is_reachable(cos(a) * r, sin(a) * r)) {
SERIAL_PROTOCOLLNPGM("?(M665 B)ed radius is implausible.");
return;
2017-11-08 02:47:45 +01:00
}
}
2017-11-08 02:47:45 +01:00
}
2017-11-08 02:47:45 +01:00
// Report settings
const char *checkingac = PSTR("Checking... AC");
2017-11-08 02:47:45 +01:00
serialprintPGM(checkingac);
if (verbose_level == 0) SERIAL_PROTOCOLPGM(" (DRY-RUN)");
if (set_up) SERIAL_PROTOCOLPGM(" (SET-UP)");
2017-11-08 02:47:45 +01:00
SERIAL_EOL();
lcd_setstatusPGM(checkingac);
print_calibration_settings(_endstop_results, _angle_results);
ac_setup(!_0p_calibration && !_1p_calibration);
if (!_0p_calibration) ac_home();
do { // start iterations
float z_at_pt[NPP + 1] = { 0.0 };
test_precision = zero_std_dev_old != 999.0 ? (zero_std_dev + zero_std_dev_old) / 2 : zero_std_dev;
2017-11-08 02:47:45 +01:00
iterations++;
2017-11-08 02:47:45 +01:00
// Probe the points
zero_std_dev_old = zero_std_dev;
if (!probe_calibration_points(z_at_pt, probe_points, towers_set, stow_after_each, set_up)) {
SERIAL_PROTOCOLLNPGM("Correct delta settings with M665 and M666");
return AC_CLEANUP();
2017-11-24 14:42:40 +01:00
}
zero_std_dev = std_dev_points(z_at_pt, _0p_calibration, _1p_calibration, _4p_calibration, _4p_opposite_points);
2017-11-08 02:47:45 +01:00
// Solve matrices
2017-11-08 02:47:45 +01:00
if ((zero_std_dev < test_precision || iterations <= force_iterations) && zero_std_dev > calibration_precision) {
#if !HAS_BED_PROBE
test_precision = 0.00; // forced end
#endif
2017-11-08 02:47:45 +01:00
if (zero_std_dev < zero_std_dev_min) {
// set roll-back point
2017-11-08 02:47:45 +01:00
COPY(e_old, delta_endstop_adj);
r_old = delta_radius;
h_old = delta_height;
COPY(a_old, delta_tower_angle_trim);
2017-11-08 02:47:45 +01:00
}
2017-07-07 04:24:30 +02:00
float e_delta[ABC] = { 0.0 },
r_delta = 0.0,
t_delta[ABC] = { 0.0 };
/**
* convergence matrices:
2018-04-28 18:24:58 +02:00
* see https://github.com/LVD-AC/Marlin-AC/tree/1.1.x-AC/documentation for
* - definition of the matrix scaling parameters
* - matrices for 4 and 7 point calibration
*/
#define ZP(N,I) ((N) * z_at_pt[I] / 4.0) // 4.0 = divider to normalize to integers
#define Z12(I) ZP(12, I)
2017-11-08 02:47:45 +01:00
#define Z4(I) ZP(4, I)
#define Z2(I) ZP(2, I)
#define Z1(I) ZP(1, I)
#define Z0(I) ZP(0, I)
// calculate factors
const float cr_old = delta_calibration_radius;
if (_7p_9_center) delta_calibration_radius *= 0.9;
h_factor = auto_tune_h();
r_factor = auto_tune_r();
a_factor = auto_tune_a();
delta_calibration_radius = cr_old;
2017-11-08 02:47:45 +01:00
switch (probe_points) {
case -1:
2018-08-12 05:33:33 +02:00
#if HAS_BED_PROBE && ENABLED(ULTIPANEL)
zprobe_zoffset += probe_z_shift(z_at_pt[CEN]);
#endif
2017-11-08 02:47:45 +01:00
case 0:
test_precision = 0.00; // forced end
break;
2017-11-08 02:47:45 +01:00
case 1:
test_precision = 0.00; // forced end
LOOP_XYZ(axis) e_delta[axis] = +Z4(CEN);
2017-11-08 02:47:45 +01:00
break;
case 2:
if (towers_set) { // see 4 point calibration (towers) matrix
e_delta[A_AXIS] = (+Z4(__A) -Z2(__B) -Z2(__C)) * h_factor +Z4(CEN);
e_delta[B_AXIS] = (-Z2(__A) +Z4(__B) -Z2(__C)) * h_factor +Z4(CEN);
e_delta[C_AXIS] = (-Z2(__A) -Z2(__B) +Z4(__C)) * h_factor +Z4(CEN);
r_delta = (+Z4(__A) +Z4(__B) +Z4(__C) -Z12(CEN)) * r_factor;
2017-11-08 02:47:45 +01:00
}
else { // see 4 point calibration (opposites) matrix
e_delta[A_AXIS] = (-Z4(_BC) +Z2(_CA) +Z2(_AB)) * h_factor +Z4(CEN);
e_delta[B_AXIS] = (+Z2(_BC) -Z4(_CA) +Z2(_AB)) * h_factor +Z4(CEN);
e_delta[C_AXIS] = (+Z2(_BC) +Z2(_CA) -Z4(_AB)) * h_factor +Z4(CEN);
r_delta = (+Z4(_BC) +Z4(_CA) +Z4(_AB) -Z12(CEN)) * r_factor;
2017-11-08 02:47:45 +01:00
}
break;
default: // see 7 point calibration (towers & opposites) matrix
e_delta[A_AXIS] = (+Z2(__A) -Z1(__B) -Z1(__C) -Z2(_BC) +Z1(_CA) +Z1(_AB)) * h_factor +Z4(CEN);
e_delta[B_AXIS] = (-Z1(__A) +Z2(__B) -Z1(__C) +Z1(_BC) -Z2(_CA) +Z1(_AB)) * h_factor +Z4(CEN);
e_delta[C_AXIS] = (-Z1(__A) -Z1(__B) +Z2(__C) +Z1(_BC) +Z1(_CA) -Z2(_AB)) * h_factor +Z4(CEN);
r_delta = (+Z2(__A) +Z2(__B) +Z2(__C) +Z2(_BC) +Z2(_CA) +Z2(_AB) -Z12(CEN)) * r_factor;
if (towers_set) { // see 7 point tower angle calibration (towers & opposites) matrix
t_delta[A_AXIS] = (+Z0(__A) -Z4(__B) +Z4(__C) +Z0(_BC) -Z4(_CA) +Z4(_AB) +Z0(CEN)) * a_factor;
t_delta[B_AXIS] = (+Z4(__A) +Z0(__B) -Z4(__C) +Z4(_BC) +Z0(_CA) -Z4(_AB) +Z0(CEN)) * a_factor;
t_delta[C_AXIS] = (-Z4(__A) +Z4(__B) +Z0(__C) -Z4(_BC) +Z4(_CA) +Z0(_AB) +Z0(CEN)) * a_factor;
2017-11-08 02:47:45 +01:00
}
break;
}
2017-11-08 02:47:45 +01:00
LOOP_XYZ(axis) delta_endstop_adj[axis] += e_delta[axis];
delta_radius += r_delta;
LOOP_XYZ(axis) delta_tower_angle_trim[axis] += t_delta[axis];
}
2018-04-28 18:24:58 +02:00
else if (zero_std_dev >= test_precision) {
// roll back
2017-11-08 02:47:45 +01:00
COPY(delta_endstop_adj, e_old);
delta_radius = r_old;
delta_height = h_old;
COPY(delta_tower_angle_trim, a_old);
2017-11-08 02:47:45 +01:00
}
2017-10-02 01:24:53 +02:00
2017-11-08 02:47:45 +01:00
if (verbose_level != 0) { // !dry run
2017-11-08 02:47:45 +01:00
// normalise angles to least squares
if (_angle_results) {
float a_sum = 0.0;
LOOP_XYZ(axis) a_sum += delta_tower_angle_trim[axis];
LOOP_XYZ(axis) delta_tower_angle_trim[axis] -= a_sum / 3.0;
}
2017-11-08 02:47:45 +01:00
// adjust delta_height and endstops by the max amount
const float z_temp = MAX3(delta_endstop_adj[A_AXIS], delta_endstop_adj[B_AXIS], delta_endstop_adj[C_AXIS]);
delta_height -= z_temp;
2017-11-08 02:47:45 +01:00
LOOP_XYZ(axis) delta_endstop_adj[axis] -= z_temp;
}
2017-11-08 09:43:29 +01:00
recalc_delta_settings();
2017-11-08 02:47:45 +01:00
NOMORE(zero_std_dev_min, zero_std_dev);
2017-11-08 02:47:45 +01:00
// print report
if (verbose_level == 3)
print_calibration_results(z_at_pt, _tower_results, _opposite_results);
2017-11-08 02:47:45 +01:00
if (verbose_level != 0) { // !dry run
if ((zero_std_dev >= test_precision && iterations > force_iterations) || zero_std_dev <= calibration_precision) { // end iterations
2017-11-08 02:47:45 +01:00
SERIAL_PROTOCOLPGM("Calibration OK");
SERIAL_PROTOCOL_SP(32);
#if HAS_BED_PROBE
if (zero_std_dev >= test_precision && !_1p_calibration && !_0p_calibration)
2017-11-08 02:47:45 +01:00
SERIAL_PROTOCOLPGM("rolling back.");
2017-07-07 09:43:33 +02:00
else
2017-11-08 02:47:45 +01:00
#endif
{
SERIAL_PROTOCOLPGM("std dev:");
SERIAL_PROTOCOL_F(zero_std_dev_min, 3);
}
SERIAL_EOL();
char mess[21];
strcpy_P(mess, PSTR("Calibration sd:"));
if (zero_std_dev_min < 1)
sprintf_P(&mess[15], PSTR("0.%03i"), int(LROUND(zero_std_dev_min * 1000.0)));
2017-11-08 02:47:45 +01:00
else
sprintf_P(&mess[15], PSTR("%03i.x"), int(LROUND(zero_std_dev_min)));
2017-11-08 02:47:45 +01:00
lcd_setstatus(mess);
print_calibration_settings(_endstop_results, _angle_results);
2017-11-08 02:47:45 +01:00
serialprintPGM(save_message);
SERIAL_EOL();
}
else { // !end iterations
2017-11-08 02:47:45 +01:00
char mess[15];
if (iterations < 31)
sprintf_P(mess, PSTR("Iteration : %02i"), int(iterations));
2017-11-08 02:47:45 +01:00
else
strcpy_P(mess, PSTR("No convergence"));
SERIAL_PROTOCOL(mess);
SERIAL_PROTOCOL_SP(32);
2017-07-03 17:06:23 +02:00
SERIAL_PROTOCOLPGM("std dev:");
SERIAL_PROTOCOL_F(zero_std_dev, 3);
SERIAL_EOL();
2017-07-07 09:43:33 +02:00
lcd_setstatus(mess);
2017-11-24 14:42:40 +01:00
if (verbose_level > 1)
print_calibration_settings(_endstop_results, _angle_results);
}
2017-11-08 02:47:45 +01:00
}
else { // dry run
2017-11-08 02:47:45 +01:00
const char *enddryrun = PSTR("End DRY-RUN");
serialprintPGM(enddryrun);
SERIAL_PROTOCOL_SP(35);
SERIAL_PROTOCOLPGM("std dev:");
SERIAL_PROTOCOL_F(zero_std_dev, 3);
SERIAL_EOL();
2017-11-08 02:47:45 +01:00
char mess[21];
strcpy_P(mess, enddryrun);
strcpy_P(&mess[11], PSTR(" sd:"));
if (zero_std_dev < 1)
sprintf_P(&mess[15], PSTR("0.%03i"), int(LROUND(zero_std_dev * 1000.0)));
2017-11-08 02:47:45 +01:00
else
sprintf_P(&mess[15], PSTR("%03i.x"), int(LROUND(zero_std_dev)));
2017-11-08 02:47:45 +01:00
lcd_setstatus(mess);
2017-05-22 18:39:57 +02:00
}
ac_home();
}
2017-11-08 02:47:45 +01:00
while (((zero_std_dev < test_precision && iterations < 31) || iterations <= force_iterations) && zero_std_dev > calibration_precision);
AC_CLEANUP();
2017-11-08 02:47:45 +01:00
}
2017-11-08 02:47:45 +01:00
#endif // DELTA_AUTO_CALIBRATION
2016-09-29 22:06:01 +02:00
#if ENABLED(G38_PROBE_TARGET)
2016-09-26 08:30:34 +02:00
static bool G38_run_probe() {
bool G38_pass_fail = false;
2017-03-13 05:33:59 +01:00
#if MULTIPLE_PROBING > 1
2017-07-28 09:19:50 +02:00
// Get direction of move and retract
float retract_mm[XYZ];
LOOP_XYZ(i) {
float dist = destination[i] - current_position[i];
retract_mm[i] = ABS(dist) < G38_MINIMUM_MOVE ? 0 : home_bump_mm((AxisEnum)i) * (dist > 0 ? -1 : 1);
2017-07-28 09:19:50 +02:00
}
#endif
2016-09-26 08:30:34 +02:00
// Move until destination reached or target hit
planner.synchronize();
2016-09-26 08:30:34 +02:00
endstops.enable(true);
G38_move = true;
G38_endstop_hit = false;
prepare_move_to_destination();
planner.synchronize();
2016-09-26 08:30:34 +02:00
G38_move = false;
endstops.hit_on_purpose();
set_current_from_steppers_for_axis(ALL_AXES);
SYNC_PLAN_POSITION_KINEMATIC();
if (G38_endstop_hit) {
G38_pass_fail = true;
2017-03-13 05:33:59 +01:00
#if MULTIPLE_PROBING > 1
// Move away by the retract distance
set_destination_from_current();
LOOP_XYZ(i) destination[i] += retract_mm[i];
endstops.enable(false);
prepare_move_to_destination();
2016-09-26 08:30:34 +02:00
feedrate_mm_s /= 4;
2016-09-26 08:30:34 +02:00
// Bump the target more slowly
LOOP_XYZ(i) destination[i] -= retract_mm[i] * 2;
2016-09-26 08:30:34 +02:00
planner.synchronize();
endstops.enable(true);
G38_move = true;
prepare_move_to_destination();
planner.synchronize();
G38_move = false;
2016-09-26 08:30:34 +02:00
set_current_from_steppers_for_axis(ALL_AXES);
SYNC_PLAN_POSITION_KINEMATIC();
#endif
}
2016-09-26 08:30:34 +02:00
endstops.hit_on_purpose();
endstops.not_homing();
return G38_pass_fail;
}
2016-09-26 08:30:34 +02:00
/**
* G38.2 - probe toward workpiece, stop on contact, signal error if failure
* G38.3 - probe toward workpiece, stop on contact
*
* Like G28 except uses Z min probe for all axes
2016-09-26 08:30:34 +02:00
*/
inline void gcode_G38(bool is_38_2) {
// Get X Y Z E F
gcode_get_destination();
setup_for_endstop_or_probe_move();
// If any axis has enough movement, do the move
LOOP_XYZ(i)
if (ABS(destination[i] - current_position[i]) >= G38_MINIMUM_MOVE) {
2017-07-28 09:19:50 +02:00
if (!parser.seenval('F')) feedrate_mm_s = homing_feedrate((AxisEnum)i);
2016-09-26 08:30:34 +02:00
// If G38.2 fails throw an error
if (!G38_run_probe() && is_38_2) {
2017-06-09 17:51:23 +02:00
SERIAL_ERROR_START();
2016-09-26 08:30:34 +02:00
SERIAL_ERRORLNPGM("Failed to reach target");
}
break;
}
clean_up_after_endstop_or_probe_move();
}
2016-09-29 22:06:01 +02:00
#endif // G38_PROBE_TARGET
2017-10-14 03:47:44 +02:00
#if HAS_MESH
2017-05-21 22:47:09 +02:00
/**
* G42: Move X & Y axes to mesh coordinates (I & J)
*/
inline void gcode_G42() {
#if ENABLED(NO_MOTION_BEFORE_HOMING)
if (axis_unhomed_error()) return;
#endif
2017-05-21 22:47:09 +02:00
if (IsRunning()) {
2017-06-27 06:31:45 +02:00
const bool hasI = parser.seenval('I');
2017-11-22 21:05:55 +01:00
const int8_t ix = hasI ? parser.value_int() : 0;
2017-06-27 06:31:45 +02:00
const bool hasJ = parser.seenval('J');
2017-11-22 21:05:55 +01:00
const int8_t iy = hasJ ? parser.value_int() : 0;
2017-05-21 22:47:09 +02:00
if ((hasI && !WITHIN(ix, 0, GRID_MAX_POINTS_X - 1)) || (hasJ && !WITHIN(iy, 0, GRID_MAX_POINTS_Y - 1))) {
SERIAL_ECHOLNPGM(MSG_ERR_MESH_XY);
return;
}
set_destination_from_current();
2017-11-03 02:17:51 +01:00
if (hasI) destination[X_AXIS] = _GET_MESH_X(ix);
if (hasJ) destination[Y_AXIS] = _GET_MESH_Y(iy);
if (parser.boolval('P')) {
if (hasI) destination[X_AXIS] -= X_PROBE_OFFSET_FROM_EXTRUDER;
if (hasJ) destination[Y_AXIS] -= Y_PROBE_OFFSET_FROM_EXTRUDER;
}
2017-05-21 22:47:09 +02:00
const float fval = parser.linearval('F');
if (fval > 0.0) feedrate_mm_s = MMM_TO_MMS(fval);
2017-05-21 22:47:09 +02:00
// SCARA kinematic has "safe" XY raw moves
2017-05-21 22:47:09 +02:00
#if IS_SCARA
prepare_uninterpolated_move_to_destination();
2017-05-21 22:47:09 +02:00
#else
prepare_move_to_destination();
#endif
}
}
2017-10-14 03:47:44 +02:00
#endif // HAS_MESH
2017-05-21 22:47:09 +02:00
/**
* G92: Set current position to given X Y Z E
*/
inline void gcode_G92() {
2017-11-01 19:08:46 +01:00
#if ENABLED(CNC_COORDINATE_SYSTEMS)
switch (parser.subcode) {
case 1:
// Zero the G92 values and restore current position
#if !IS_SCARA
LOOP_XYZ(i) {
const float v = position_shift[i];
if (v) {
position_shift[i] = 0;
update_software_endstops((AxisEnum)i);
}
}
#endif // Not SCARA
return;
}
#endif
#if ENABLED(CNC_COORDINATE_SYSTEMS)
#define IS_G92_0 (parser.subcode == 0)
#else
#define IS_G92_0 true
#endif
bool didE = false;
2018-09-09 04:17:02 +02:00
#if IS_SCARA || !HAS_POSITION_SHIFT || ENABLED(HANGPRINTER)
bool didXYZ = false;
#else
constexpr bool didXYZ = false;
#endif
2017-11-07 19:27:05 +01:00
2017-11-01 19:08:46 +01:00
if (IS_G92_0) LOOP_XYZE(i) {
2017-06-27 06:31:45 +02:00
if (parser.seenval(axis_codes[i])) {
2017-11-07 19:58:31 +01:00
const float l = parser.value_axis_units((AxisEnum)i),
2018-09-09 04:17:02 +02:00
v = i == E_CART ? l : LOGICAL_TO_NATIVE(l, i),
2017-11-07 19:58:31 +01:00
d = v - current_position[i];
2018-09-09 04:17:02 +02:00
if (!NEAR_ZERO(d)
#if ENABLED(HANGPRINTER)
|| true // Hangprinter needs to update its line lengths whether current_position changed or not
#endif
) {
#if IS_SCARA || !HAS_POSITION_SHIFT || ENABLED(HANGPRINTER)
if (i == E_CART) didE = true; else didXYZ = true;
current_position[i] = v; // Without workspaces revert to Marlin 1.0 behavior
2017-11-07 19:27:05 +01:00
#elif HAS_POSITION_SHIFT
2018-09-09 04:17:02 +02:00
if (i == E_CART) {
didE = true;
2018-09-09 04:17:02 +02:00
current_position[E_CART] = v; // When using coordinate spaces, only E is set directly
}
2017-11-07 19:27:05 +01:00
else {
position_shift[i] += d; // Other axes simply offset the coordinate space
2017-03-05 01:01:33 +01:00
update_software_endstops((AxisEnum)i);
2017-11-07 19:27:05 +01:00
}
#endif
}
}
}
2017-11-01 19:08:46 +01:00
#if ENABLED(CNC_COORDINATE_SYSTEMS)
// Apply workspace offset to the active coordinate system
if (WITHIN(active_coordinate_system, 0, MAX_COORDINATE_SYSTEMS - 1))
COPY(coordinate_system[active_coordinate_system], position_shift);
#endif
2018-05-04 03:23:35 +02:00
// Update planner/steppers only if the native coordinates changed
if (didXYZ) SYNC_PLAN_POSITION_KINEMATIC();
else if (didE) sync_plan_position_e();
2016-09-22 00:54:44 +02:00
report_current_position();
}
2018-09-09 04:17:02 +02:00
#if ENABLED(MECHADUINO_I2C_COMMANDS)
/**
* G95: Set torque mode
*/
inline void gcode_G95() {
i2cFloat torques[NUM_AXIS]; // Assumes 4-byte floats here and in Mechaduino firmware
LOOP_NUM_AXIS(i)
torques[i].fval = parser.floatval(RAW_AXIS_CODES(i), 999.9); // 999.9 chosen to satisfy fabs(999.9) > 255.0
// 0x5f == 95
#define G95_SEND(LETTER) do { \
if (fabs(torques[_AXIS(LETTER)].fval) < 255.0){ \
torques[_AXIS(LETTER)].fval = -fabs(torques[_AXIS(LETTER)].fval); \
if(!INVERT_##LETTER##_DIR) torques[_AXIS(LETTER)].fval = -torques[_AXIS(LETTER)].fval; \
i2c.address(LETTER##_MOTOR_I2C_ADDR); \
i2c.reset(); \
i2c.addbyte(0x5f); \
i2c.addbytes(torques[_AXIS(LETTER)].bval, sizeof(float)); \
i2c.send(); \
}} while(0)
#if ENABLED(HANGPRINTER)
#if ENABLED(A_IS_MECHADUINO)
G95_SEND(A);
#endif
#if ENABLED(B_IS_MECHADUINO)
G95_SEND(B);
#endif
#if ENABLED(C_IS_MECHADUINO)
G95_SEND(C);
#endif
#if ENABLED(D_IS_MECHADUINO)
G95_SEND(D);
#endif
#else
#if ENABLED(X_IS_MECHADUINO)
G95_SEND(X);
#endif
#if ENABLED(Y_IS_MECHADUINO)
G95_SEND(Y);
#endif
#if ENABLED(Z_IS_MECHADUINO)
G95_SEND(Z);
#endif
#endif
#if ENABLED(E_IS_MECHADUINO)
G95_SEND(E);
#endif
}
/**
* G96: Mark encoder reference point
*/
inline void gcode_G96() {
bool mark[NUM_AXIS] = { false };
if (!parser.seen_any())
LOOP_NUM_AXIS(i)
mark[i] = true;
else
LOOP_NUM_AXIS(i)
if (parser.seen(RAW_AXIS_CODES(i)))
mark[i] = true;
// 0x60 == 96
#define G96_SEND(LETTER) do {\
if (mark[LETTER##_AXIS]){ \
i2c.address(LETTER##_MOTOR_I2C_ADDR); \
i2c.reset(); \
i2c.addbyte(0x60); \
i2c.send(); \
}} while(0)
#if ENABLED(HANGPRINTER)
#if ENABLED(A_IS_MECHADUINO)
G96_SEND(A);
#endif
#if ENABLED(B_IS_MECHADUINO)
G96_SEND(B);
#endif
#if ENABLED(C_IS_MECHADUINO)
G96_SEND(C);
#endif
#if ENABLED(D_IS_MECHADUINO)
G96_SEND(D);
#endif
#else
#if ENABLED(X_IS_MECHADUINO)
G96_SEND(X);
#endif
#if ENABLED(Y_IS_MECHADUINO)
G96_SEND(Y);
#endif
#if ENABLED(Z_IS_MECHADUINO)
G96_SEND(Z);
#endif
#endif
#if ENABLED(E_IS_MECHADUINO)
G96_SEND(E); // E ref point not used by any other commands (Feb 7, 2018)
#endif
}
float ang_to_mm(float ang, const AxisEnum axis) {
const float abs_step_in_origin =
#if ENABLED(LINE_BUILDUP_COMPENSATION_FEATURE)
planner.k0[axis] * (SQRT(planner.k1[axis] + planner.k2[axis] * line_lengths_origin[axis]) - planner.sqrtk1[axis])
#else
line_lengths_origin[axis] * planner.axis_steps_per_mm[axis]
#endif
;
const float c = abs_step_in_origin + ang * float(STEPS_PER_MOTOR_REVOLUTION) / 360.0; // current step count
return
#if ENABLED(LINE_BUILDUP_COMPENSATION_FEATURE)
// Inverse function found in planner.cpp, where target[AXIS_A] is calculated
((c / planner.k0[axis] + planner.sqrtk1[axis]) * (c / planner.k0[axis] + planner.sqrtk1[axis]) - planner.k1[axis]) / planner.k2[axis] - line_lengths_origin[axis]
#else
c / planner.axis_steps_per_mm[axis] - line_lengths_origin[axis]
#endif
;
}
void report_axis_position_from_encoder_data() {
i2cFloat ang;
#define M114_S1_RECEIVE(LETTER) do { \
i2c.address(LETTER##_MOTOR_I2C_ADDR); \
i2c.request(sizeof(float)); \
i2c.capture(ang.bval, sizeof(float)); \
if(LETTER##_INVERT_REPORTED_ANGLE == INVERT_##LETTER##_DIR) ang.fval = -ang.fval; \
SERIAL_PROTOCOL(ang_to_mm(ang.fval, LETTER##_AXIS)); \
} while(0)
SERIAL_CHAR('[');
#if ENABLED(HANGPRINTER)
#if ENABLED(A_IS_MECHADUINO)
M114_S1_RECEIVE(A);
#endif
#if ENABLED(B_IS_MECHADUINO)
SERIAL_PROTOCOLPGM(", ");
M114_S1_RECEIVE(B);
#endif
#if ENABLED(C_IS_MECHADUINO)
SERIAL_PROTOCOLPGM(", ");
M114_S1_RECEIVE(C);
#endif
#if ENABLED(D_IS_MECHADUINO)
SERIAL_PROTOCOLPGM(", ");
M114_S1_RECEIVE(D);
#endif
#else
#if ENABLED(X_IS_MECHADUINO)
M114_S1_RECEIVE(X);
#endif
#if ENABLED(Y_IS_MECHADUINO)
SERIAL_PROTOCOLPGM(", ");
M114_S1_RECEIVE(Y);
#endif
#if ENABLED(Z_IS_MECHADUINO)
SERIAL_PROTOCOLPGM(", ");
M114_S1_RECEIVE(Z);
#endif
#endif
SERIAL_CHAR(']');
SERIAL_EOL();
}
#endif // MECHADUINO_I2C_COMMANDS
void report_xyz_from_stepper_position() {
get_cartesian_from_steppers(); // writes to cartes[XYZ]
SERIAL_CHAR('[');
SERIAL_PROTOCOL(cartes[X_AXIS]);
SERIAL_PROTOCOLPAIR(", ", cartes[Y_AXIS]);
SERIAL_PROTOCOLPAIR(", ", cartes[Z_AXIS]);
SERIAL_CHAR(']');
SERIAL_EOL();
}
#if HAS_RESUME_CONTINUE
/**
* M0: Unconditional stop - Wait for user button press on LCD
* M1: Conditional stop - Wait for user button press on LCD
*/
inline void gcode_M0_M1() {
2017-05-20 10:03:08 +02:00
const char * const args = parser.string_arg;
2017-05-20 10:03:08 +02:00
millis_t ms = 0;
bool hasP = false, hasS = false;
2017-06-27 06:31:45 +02:00
if (parser.seenval('P')) {
2017-05-20 10:03:08 +02:00
ms = parser.value_millis(); // milliseconds to wait
hasP = ms > 0;
}
2017-06-27 06:31:45 +02:00
if (parser.seenval('S')) {
2017-05-20 10:03:08 +02:00
ms = parser.value_millis_from_seconds(); // seconds to wait
hasS = ms > 0;
}
const bool has_message = !hasP && !hasS && args && *args;
planner.synchronize();
2018-05-04 03:55:00 +02:00
2016-09-12 03:51:53 +02:00
#if ENABLED(ULTIPANEL)
if (has_message)
2016-09-12 03:51:53 +02:00
lcd_setstatus(args, true);
else {
LCD_MESSAGEPGM(MSG_USERWAIT);
#if ENABLED(LCD_PROGRESS_BAR) && PROGRESS_MSG_EXPIRE > 0
dontExpireStatus();
#endif
}
#else
if (has_message) {
2017-06-09 17:51:23 +02:00
SERIAL_ECHO_START();
2016-09-12 03:51:53 +02:00
SERIAL_ECHOLN(args);
}
#endif
2016-10-26 06:25:47 +02:00
KEEPALIVE_STATE(PAUSED_FOR_USER);
2017-03-29 02:45:54 +02:00
wait_for_user = true;
2016-10-26 06:25:47 +02:00
2017-05-20 10:03:08 +02:00
if (ms > 0) {
ms += millis(); // wait until this time for a click
2017-05-20 10:03:08 +02:00
while (PENDING(millis(), ms) && wait_for_user) idle();
}
else
while (wait_for_user) idle();
2016-10-26 06:25:47 +02:00
#if ENABLED(PRINTER_EVENT_LEDS) && ENABLED(SDSUPPORT)
if (lights_off_after_print) {
leds.set_off();
lights_off_after_print = false;
}
#endif
lcd_reset_status();
2016-10-26 06:25:47 +02:00
wait_for_user = false;
2016-09-12 03:51:53 +02:00
KEEPALIVE_STATE(IN_HANDLER);
}
#endif // HAS_RESUME_CONTINUE
2017-04-07 20:52:45 +02:00
#if ENABLED(SPINDLE_LASER_ENABLE)
/**
* M3: Spindle Clockwise
* M4: Spindle Counter-clockwise
*
* S0 turns off spindle.
*
* If no speed PWM output is defined then M3/M4 just turns it on.
*
* At least 12.8KHz (50Hz * 256) is needed for spindle PWM.
* Hardware PWM is required. ISRs are too slow.
*
* NOTE: WGM for timers 3, 4, and 5 must be either Mode 1 or Mode 5.
* No other settings give a PWM signal that goes from 0 to 5 volts.
*
* The system automatically sets WGM to Mode 1, so no special
* initialization is needed.
*
* WGM bits for timer 2 are automatically set by the system to
* Mode 1. This produces an acceptable 0 to 5 volt signal.
* No special initialization is needed.
*
* NOTE: A minimum PWM frequency of 50 Hz is needed. All prescaler
* factors for timers 2, 3, 4, and 5 are acceptable.
*
* SPINDLE_LASER_ENABLE_PIN needs an external pullup or it may power on
* the spindle/laser during power-up or when connecting to the host
* (usually goes through a reset which sets all I/O pins to tri-state)
*
* PWM duty cycle goes from 0 (off) to 255 (always on).
*/
// Wait for spindle to come up to speed
inline void delay_for_power_up() { dwell(SPINDLE_LASER_POWERUP_DELAY); }
2017-04-07 20:52:45 +02:00
// Wait for spindle to stop turning
inline void delay_for_power_down() { dwell(SPINDLE_LASER_POWERDOWN_DELAY); }
2017-04-07 20:52:45 +02:00
/**
* ocr_val_mode() is used for debugging and to get the points needed to compute the RPM vs ocr_val line
*
* it accepts inputs of 0-255
*/
inline void ocr_val_mode() {
2017-05-20 10:03:08 +02:00
uint8_t spindle_laser_power = parser.value_byte();
2017-04-07 20:52:45 +02:00
WRITE(SPINDLE_LASER_ENABLE_PIN, SPINDLE_LASER_ENABLE_INVERT); // turn spindle on (active low)
if (SPINDLE_LASER_PWM_INVERT) spindle_laser_power = 255 - spindle_laser_power;
analogWrite(SPINDLE_LASER_PWM_PIN, spindle_laser_power);
}
inline void gcode_M3_M4(bool is_M3) {
planner.synchronize(); // wait until previous movement commands (G0/G0/G2/G3) have completed before playing with the spindle
2017-04-07 20:52:45 +02:00
#if SPINDLE_DIR_CHANGE
const bool rotation_dir = (is_M3 && !SPINDLE_INVERT_DIR || !is_M3 && SPINDLE_INVERT_DIR) ? HIGH : LOW;
if (SPINDLE_STOP_ON_DIR_CHANGE \
&& READ(SPINDLE_LASER_ENABLE_PIN) == SPINDLE_LASER_ENABLE_INVERT \
&& READ(SPINDLE_DIR_PIN) != rotation_dir
) {
WRITE(SPINDLE_LASER_ENABLE_PIN, !SPINDLE_LASER_ENABLE_INVERT); // turn spindle off
delay_for_power_down();
}
WRITE(SPINDLE_DIR_PIN, rotation_dir);
2017-04-07 20:52:45 +02:00
#endif
/**
* Our final value for ocr_val is an unsigned 8 bit value between 0 and 255 which usually means uint8_t.
* Went to uint16_t because some of the uint8_t calculations would sometimes give 1000 0000 rather than 1111 1111.
* Then needed to AND the uint16_t result with 0x00FF to make sure we only wrote the byte of interest.
*/
#if ENABLED(SPINDLE_LASER_PWM)
2017-05-20 10:03:08 +02:00
if (parser.seen('O')) ocr_val_mode();
2017-04-07 20:52:45 +02:00
else {
const float spindle_laser_power = parser.floatval('S');
2017-04-07 20:52:45 +02:00
if (spindle_laser_power == 0) {
WRITE(SPINDLE_LASER_ENABLE_PIN, !SPINDLE_LASER_ENABLE_INVERT); // turn spindle off (active low)
analogWrite(SPINDLE_LASER_PWM_PIN, SPINDLE_LASER_PWM_INVERT ? 255 : 0); // only write low byte
2017-04-07 20:52:45 +02:00
delay_for_power_down();
}
else {
int16_t ocr_val = (spindle_laser_power - (SPEED_POWER_INTERCEPT)) * (1.0f / (SPEED_POWER_SLOPE)); // convert RPM to PWM duty cycle
2017-04-07 20:52:45 +02:00
NOMORE(ocr_val, 255); // limit to max the Atmel PWM will support
if (spindle_laser_power <= SPEED_POWER_MIN)
ocr_val = (SPEED_POWER_MIN - (SPEED_POWER_INTERCEPT)) * (1.0f / (SPEED_POWER_SLOPE)); // minimum setting
2017-04-07 20:52:45 +02:00
if (spindle_laser_power >= SPEED_POWER_MAX)
ocr_val = (SPEED_POWER_MAX - (SPEED_POWER_INTERCEPT)) * (1.0f / (SPEED_POWER_SLOPE)); // limit to max RPM
2017-04-07 20:52:45 +02:00
if (SPINDLE_LASER_PWM_INVERT) ocr_val = 255 - ocr_val;
WRITE(SPINDLE_LASER_ENABLE_PIN, SPINDLE_LASER_ENABLE_INVERT); // turn spindle on (active low)
analogWrite(SPINDLE_LASER_PWM_PIN, ocr_val & 0xFF); // only write low byte
delay_for_power_up();
}
}
#else
WRITE(SPINDLE_LASER_ENABLE_PIN, SPINDLE_LASER_ENABLE_INVERT); // turn spindle on (active low) if spindle speed option not enabled
delay_for_power_up();
#endif
}
/**
* M5 turn off spindle
*/
inline void gcode_M5() {
planner.synchronize();
2017-04-07 20:52:45 +02:00
WRITE(SPINDLE_LASER_ENABLE_PIN, !SPINDLE_LASER_ENABLE_INVERT);
#if ENABLED(SPINDLE_LASER_PWM)
analogWrite(SPINDLE_LASER_PWM_PIN, SPINDLE_LASER_PWM_INVERT ? 255 : 0);
#endif
2017-04-07 20:52:45 +02:00
delay_for_power_down();
}
#endif // SPINDLE_LASER_ENABLE
/**
* M17: Enable power on all stepper motors
*/
inline void gcode_M17() {
LCD_MESSAGEPGM(MSG_NO_MOVE);
enable_all_steppers();
}
#if ENABLED(ADVANCED_PAUSE_FEATURE)
2017-12-27 05:51:55 +01:00
void do_pause_e_move(const float &length, const float &fr) {
set_destination_from_current();
2018-09-09 04:17:02 +02:00
destination[E_CART] += length / planner.e_factor[active_extruder];
planner.buffer_line_kinematic(destination, fr, active_extruder);
2017-12-27 05:51:55 +01:00
set_current_from_destination();
planner.synchronize();
2017-12-27 05:51:55 +01:00
}
static float resume_position[XYZE];
2018-02-23 20:42:21 +01:00
int8_t did_pause_print = 0;
2017-12-27 05:51:55 +01:00
#if HAS_BUZZER
static void filament_change_beep(const int8_t max_beep_count, const bool init=false) {
static millis_t next_buzz = 0;
static int8_t runout_beep = 0;
2017-12-27 05:51:55 +01:00
if (init) next_buzz = runout_beep = 0;
2017-12-27 05:51:55 +01:00
const millis_t ms = millis();
if (ELAPSED(ms, next_buzz)) {
if (max_beep_count < 0 || runout_beep < max_beep_count + 5) { // Only beep as long as we're supposed to
next_buzz = ms + ((max_beep_count < 0 || runout_beep < max_beep_count) ? 1000 : 500);
BUZZ(50, 880 - (runout_beep & 1) * 220);
runout_beep++;
}
}
}
2017-12-27 05:51:55 +01:00
#endif
/**
* Ensure a safe temperature for extrusion
*
* - Fail if the TARGET temperature is too low
* - Display LCD placard with temperature status
* - Return when heating is done or aborted
*
* Returns 'true' if heating was completed, 'false' for abort
*/
2017-12-27 05:51:55 +01:00
static bool ensure_safe_temperature(const AdvancedPauseMode mode=ADVANCED_PAUSE_MODE_PAUSE_PRINT) {
2017-12-27 05:51:55 +01:00
#if ENABLED(PREVENT_COLD_EXTRUSION)
if (!DEBUGGING(DRYRUN) && thermalManager.targetTooColdToExtrude(active_extruder)) {
SERIAL_ERROR_START();
SERIAL_ERRORLNPGM(MSG_HOTEND_TOO_COLD);
return false;
}
2017-12-27 05:51:55 +01:00
#endif
2017-12-27 05:51:55 +01:00
#if ENABLED(ULTIPANEL)
lcd_advanced_pause_show_message(ADVANCED_PAUSE_MESSAGE_WAIT_FOR_NOZZLES_TO_HEAT, mode);
#else
UNUSED(mode);
#endif
2017-10-24 21:41:54 +02:00
2017-12-27 05:51:55 +01:00
wait_for_heatup = true; // M108 will clear this
while (wait_for_heatup && thermalManager.wait_for_heating(active_extruder)) idle();
const bool status = wait_for_heatup;
wait_for_heatup = false;
return status;
2017-10-24 21:41:54 +02:00
}
/**
* Load filament into the hotend
*
* - Fail if the a safe temperature was not reached
* - If pausing for confirmation, wait for a click or M108
* - Show "wait for load" placard
* - Load and purge filament
* - Show "Purge more" / "Continue" menu
* - Return when "Continue" is selected
*
* Returns 'true' if load was completed, 'false' for abort
*/
static bool load_filament(const float &slow_load_length=0, const float &fast_load_length=0, const float &purge_length=0, const int8_t max_beep_count=0,
2017-12-27 05:51:55 +01:00
const bool show_lcd=false, const bool pause_for_user=false,
const AdvancedPauseMode mode=ADVANCED_PAUSE_MODE_PAUSE_PRINT
2017-05-27 23:42:56 +02:00
) {
2017-12-27 05:51:55 +01:00
#if DISABLED(ULTIPANEL)
UNUSED(show_lcd);
#endif
2017-12-27 05:51:55 +01:00
if (!ensure_safe_temperature(mode)) {
#if ENABLED(ULTIPANEL)
if (show_lcd) // Show status screen
lcd_advanced_pause_show_message(ADVANCED_PAUSE_MESSAGE_STATUS);
#endif
2017-12-27 05:51:55 +01:00
return false;
}
2017-12-27 05:51:55 +01:00
if (pause_for_user) {
#if ENABLED(ULTIPANEL)
if (show_lcd) // Show "insert filament"
lcd_advanced_pause_show_message(ADVANCED_PAUSE_MESSAGE_INSERT, mode);
#endif
SERIAL_ECHO_START();
SERIAL_ECHOLNPGM(MSG_FILAMENT_CHANGE_INSERT);
2017-12-27 05:51:55 +01:00
#if HAS_BUZZER
filament_change_beep(max_beep_count, true);
#else
UNUSED(max_beep_count);
#endif
KEEPALIVE_STATE(PAUSED_FOR_USER);
wait_for_user = true; // LCD click or M108 will clear this
while (wait_for_user) {
#if HAS_BUZZER
filament_change_beep(max_beep_count);
#endif
idle(true);
}
2017-12-27 05:51:55 +01:00
KEEPALIVE_STATE(IN_HANDLER);
}
2017-12-27 05:51:55 +01:00
#if ENABLED(ULTIPANEL)
if (show_lcd) // Show "wait for load" message
2017-12-27 05:51:55 +01:00
lcd_advanced_pause_show_message(ADVANCED_PAUSE_MESSAGE_LOAD, mode);
#endif
// Slow Load filament
if (slow_load_length) do_pause_e_move(slow_load_length, FILAMENT_CHANGE_SLOW_LOAD_FEEDRATE);
// Fast Load Filament
if (fast_load_length) {
2018-04-09 07:42:24 +02:00
#if FILAMENT_CHANGE_FAST_LOAD_ACCEL > 0
const float saved_acceleration = planner.retract_acceleration;
planner.retract_acceleration = FILAMENT_CHANGE_FAST_LOAD_ACCEL;
#endif
do_pause_e_move(fast_load_length, FILAMENT_CHANGE_FAST_LOAD_FEEDRATE);
2018-04-09 07:42:24 +02:00
#if FILAMENT_CHANGE_FAST_LOAD_ACCEL > 0
planner.retract_acceleration = saved_acceleration;
#endif
}
#if ENABLED(ADVANCED_PAUSE_CONTINUOUS_PURGE)
2017-12-27 05:51:55 +01:00
#if ENABLED(ULTIPANEL)
if (show_lcd)
lcd_advanced_pause_show_message(ADVANCED_PAUSE_MESSAGE_CONTINUOUS_PURGE);
2017-12-27 05:51:55 +01:00
#endif
wait_for_user = true;
for (float purge_count = purge_length; purge_count > 0 && wait_for_user; --purge_count)
do_pause_e_move(1, ADVANCED_PAUSE_PURGE_FEEDRATE);
wait_for_user = false;
#else
do {
if (purge_length > 0) {
// "Wait for filament purge"
#if ENABLED(ULTIPANEL)
if (show_lcd)
lcd_advanced_pause_show_message(ADVANCED_PAUSE_MESSAGE_PURGE, mode);
#endif
// Extrude filament to get into hotend
do_pause_e_move(purge_length, ADVANCED_PAUSE_PURGE_FEEDRATE);
}
// Show "Purge More" / "Resume" menu and wait for reply
#if ENABLED(ULTIPANEL)
if (show_lcd) {
KEEPALIVE_STATE(PAUSED_FOR_USER);
wait_for_user = false;
lcd_advanced_pause_show_message(ADVANCED_PAUSE_MESSAGE_OPTION, mode);
while (advanced_pause_menu_response == ADVANCED_PAUSE_RESPONSE_WAIT_FOR) idle(true);
KEEPALIVE_STATE(IN_HANDLER);
}
#endif
// Keep looping if "Purge More" was selected
} while (
#if ENABLED(ULTIPANEL)
show_lcd && advanced_pause_menu_response == ADVANCED_PAUSE_RESPONSE_EXTRUDE_MORE
#else
0
#endif
);
#endif
2017-12-27 05:51:55 +01:00
return true;
2017-10-24 21:41:54 +02:00
}
/**
* Unload filament from the hotend
*
* - Fail if the a safe temperature was not reached
* - Show "wait for unload" placard
* - Retract, pause, then unload filament
* - Disable E stepper (on most machines)
*
* Returns 'true' if unload was completed, 'false' for abort
*/
2017-12-27 05:51:55 +01:00
static bool unload_filament(const float &unload_length, const bool show_lcd=false,
const AdvancedPauseMode mode=ADVANCED_PAUSE_MODE_PAUSE_PRINT
2017-05-27 23:42:56 +02:00
) {
2017-12-27 05:51:55 +01:00
if (!ensure_safe_temperature(mode)) {
2017-06-13 06:09:44 +02:00
#if ENABLED(ULTIPANEL)
2017-12-27 05:51:55 +01:00
if (show_lcd) // Show status screen
lcd_advanced_pause_show_message(ADVANCED_PAUSE_MESSAGE_STATUS);
#endif
2017-12-27 05:51:55 +01:00
return false;
}
2017-12-27 05:51:55 +01:00
#if DISABLED(ULTIPANEL)
UNUSED(show_lcd);
#else
if (show_lcd)
lcd_advanced_pause_show_message(ADVANCED_PAUSE_MESSAGE_UNLOAD, mode);
2017-06-13 06:09:44 +02:00
#endif
2017-12-27 05:51:55 +01:00
// Retract filament
do_pause_e_move(-FILAMENT_UNLOAD_RETRACT_LENGTH, PAUSE_PARK_RETRACT_FEEDRATE);
// Wait for filament to cool
safe_delay(FILAMENT_UNLOAD_DELAY);
// Quickly purge
do_pause_e_move(FILAMENT_UNLOAD_RETRACT_LENGTH + FILAMENT_UNLOAD_PURGE_LENGTH, planner.max_feedrate_mm_s[E_AXIS]);
// Unload filament
2018-04-09 07:42:24 +02:00
#if FILAMENT_CHANGE_FAST_LOAD_ACCEL > 0
const float saved_acceleration = planner.retract_acceleration;
planner.retract_acceleration = FILAMENT_CHANGE_UNLOAD_ACCEL;
#endif
2017-12-27 05:51:55 +01:00
do_pause_e_move(unload_length, FILAMENT_CHANGE_UNLOAD_FEEDRATE);
2018-04-09 07:42:24 +02:00
#if FILAMENT_CHANGE_FAST_LOAD_ACCEL > 0
planner.retract_acceleration = saved_acceleration;
#endif
2017-06-13 06:09:44 +02:00
// Disable extruders steppers for manual filament changing (only on boards that have separate ENABLE_PINS)
#if E0_ENABLE_PIN != X_ENABLE_PIN && E1_ENABLE_PIN != Y_ENABLE_PIN
2017-12-27 05:51:55 +01:00
disable_e_stepper(active_extruder);
2017-06-13 06:09:44 +02:00
safe_delay(100);
#endif
2017-12-27 05:51:55 +01:00
return true;
}
/**
* Pause procedure
*
* - Abort if already paused
* - Send host action for pause, if configured
* - Abort if TARGET temperature is too low
* - Display "wait for start of filament change" (if a length was specified)
* - Initial retract, if current temperature is hot enough
* - Park the nozzle at the given position
* - Call unload_filament (if a length was specified)
*
* Returns 'true' if pause was completed, 'false' for abort
*/
2017-12-27 05:51:55 +01:00
static bool pause_print(const float &retract, const point_t &park_point, const float &unload_length=0, const bool show_lcd=false) {
if (did_pause_print) return false; // already paused
#ifdef ACTION_ON_PAUSE
SERIAL_ECHOLNPGM("//action:" ACTION_ON_PAUSE);
#endif
2017-12-27 05:51:55 +01:00
if (!DEBUGGING(DRYRUN) && unload_length && thermalManager.targetTooColdToExtrude(active_extruder)) {
SERIAL_ERROR_START();
SERIAL_ERRORLNPGM(MSG_HOTEND_TOO_COLD);
#if ENABLED(ULTIPANEL)
if (show_lcd) // Show status screen
lcd_advanced_pause_show_message(ADVANCED_PAUSE_MESSAGE_STATUS);
LCD_MESSAGEPGM(MSG_M600_TOO_COLD);
#endif
2017-12-27 05:51:55 +01:00
return false; // unable to reach safe temperature
}
// Indicate that the printer is paused
++did_pause_print;
// Pause the print job and timer
#if ENABLED(SDSUPPORT)
if (card.sdprinting) {
card.pauseSDPrint();
++did_pause_print; // Indicate SD pause also
}
#endif
print_job_timer.pause();
// Save current position
COPY(resume_position, current_position);
2018-05-04 03:55:00 +02:00
// Wait for synchronize steppers
planner.synchronize();
2018-05-04 03:55:00 +02:00
2017-10-24 21:41:54 +02:00
// Initial retract before move to filament change position
2018-01-21 01:40:00 +01:00
if (retract && thermalManager.hotEnoughToExtrude(active_extruder))
do_pause_e_move(retract, PAUSE_PARK_RETRACT_FEEDRATE);
// Park the nozzle by moving up by z_lift and then moving to (x_pos, y_pos)
if (!axis_unhomed_error())
Nozzle::park(2, park_point);
2017-12-27 05:51:55 +01:00
// Unload the filament
if (unload_length)
unload_filament(unload_length, show_lcd);
return true;
}
/**
* - Show "Insert filament and press button to continue"
* - Wait for a click before returning
* - Heaters can time out, reheated before accepting a click
*
* Used by M125 and M600
*/
2017-12-27 05:51:55 +01:00
static void wait_for_filament_reload(const int8_t max_beep_count=0) {
bool nozzle_timed_out = false;
2017-12-27 05:51:55 +01:00
#if ENABLED(ULTIPANEL)
lcd_advanced_pause_show_message(ADVANCED_PAUSE_MESSAGE_INSERT);
2017-06-13 06:09:44 +02:00
#endif
2017-12-27 05:51:55 +01:00
SERIAL_ECHO_START();
SERIAL_ERRORLNPGM(MSG_FILAMENT_CHANGE_INSERT);
2017-06-13 06:09:44 +02:00
2017-12-27 05:51:55 +01:00
#if HAS_BUZZER
filament_change_beep(max_beep_count, true);
2017-06-13 06:09:44 +02:00
#endif
// Start the heater idle timers
const millis_t nozzle_timeout = (millis_t)(PAUSE_PARK_NOZZLE_TIMEOUT) * 1000UL;
HOTEND_LOOP()
thermalManager.start_heater_idle_timer(e, nozzle_timeout);
// Wait for filament insert by user and press button
KEEPALIVE_STATE(PAUSED_FOR_USER);
wait_for_user = true; // LCD click or M108 will clear this
while (wait_for_user) {
#if HAS_BUZZER
filament_change_beep(max_beep_count);
#endif
2017-04-07 20:52:45 +02:00
2017-06-13 06:09:44 +02:00
// If the nozzle has timed out, wait for the user to press the button to re-heat the nozzle, then
// re-heat the nozzle, re-show the insert screen, restart the idle timers, and start over
if (!nozzle_timed_out)
HOTEND_LOOP()
nozzle_timed_out |= thermalManager.is_heater_idle(e);
2017-06-13 06:09:44 +02:00
if (nozzle_timed_out) {
#if ENABLED(ULTIPANEL)
lcd_advanced_pause_show_message(ADVANCED_PAUSE_MESSAGE_CLICK_TO_HEAT_NOZZLE);
2017-06-13 06:09:44 +02:00
#endif
2017-12-27 05:51:55 +01:00
SERIAL_ECHO_START();
#if ENABLED(ULTIPANEL) && ENABLED(EMERGENCY_PARSER)
SERIAL_ERRORLNPGM(MSG_FILAMENT_CHANGE_HEAT);
#elif ENABLED(EMERGENCY_PARSER)
SERIAL_ERRORLNPGM(MSG_FILAMENT_CHANGE_HEAT_M108);
#else
SERIAL_ERRORLNPGM(MSG_FILAMENT_CHANGE_HEAT_LCD);
#endif
2017-06-13 06:09:44 +02:00
// Wait for LCD click or M108
while (wait_for_user) idle(true);
// Re-enable the heaters if they timed out
HOTEND_LOOP() thermalManager.reset_heater_idle_timer(e);
// Wait for the heaters to reach the target temperatures
ensure_safe_temperature();
#if ENABLED(ULTIPANEL)
lcd_advanced_pause_show_message(ADVANCED_PAUSE_MESSAGE_INSERT);
#endif
2017-12-27 05:51:55 +01:00
SERIAL_ECHO_START();
#if ENABLED(ULTIPANEL) && ENABLED(EMERGENCY_PARSER)
SERIAL_ERRORLNPGM(MSG_FILAMENT_CHANGE_INSERT);
#elif ENABLED(EMERGENCY_PARSER)
SERIAL_ERRORLNPGM(MSG_FILAMENT_CHANGE_INSERT_M108);
#else
SERIAL_ERRORLNPGM(MSG_FILAMENT_CHANGE_INSERT_LCD);
#endif
2017-06-13 06:09:44 +02:00
// Start the heater idle timers
const millis_t nozzle_timeout = (millis_t)(PAUSE_PARK_NOZZLE_TIMEOUT) * 1000UL;
HOTEND_LOOP()
thermalManager.start_heater_idle_timer(e, nozzle_timeout);
2018-01-02 01:03:18 +01:00
wait_for_user = true; // Wait for user to load filament
2017-06-13 06:09:44 +02:00
nozzle_timed_out = false;
#if HAS_BUZZER
filament_change_beep(max_beep_count, true);
#endif
}
idle(true);
}
KEEPALIVE_STATE(IN_HANDLER);
}
/**
* Resume or Start print procedure
*
* - Abort if not paused
* - Reset heater idle timers
* - Load filament if specified, but only if:
* - a nozzle timed out, or
* - the nozzle is already heated.
* - Display "wait for print to resume"
* - Re-prime the nozzle...
* - FWRETRACT: Recover/prime from the prior G10.
* - !FWRETRACT: Retract by resume_position[E], if negative.
* Not sure how this logic comes into use.
* - Move the nozzle back to resume_position
* - Sync the planner E to resume_position[E]
* - Send host action for resume, if configured
* - Resume the current SD print job, if any
*/
static void resume_print(const float &slow_load_length=0, const float &fast_load_length=0, const float &purge_length=ADVANCED_PAUSE_PURGE_LENGTH, const int8_t max_beep_count=0) {
if (!did_pause_print) return;
// Re-enable the heaters if they timed out
bool nozzle_timed_out = false;
HOTEND_LOOP() {
nozzle_timed_out |= thermalManager.is_heater_idle(e);
thermalManager.reset_heater_idle_timer(e);
}
2018-04-09 07:42:24 +02:00
if (nozzle_timed_out || thermalManager.hotEnoughToExtrude(active_extruder)) {
2017-12-27 05:51:55 +01:00
// Load the new filament
load_filament(slow_load_length, fast_load_length, purge_length, max_beep_count, true, nozzle_timed_out);
}
#if ENABLED(ULTIPANEL)
// "Wait for print to resume"
lcd_advanced_pause_show_message(ADVANCED_PAUSE_MESSAGE_RESUME);
#endif
2017-03-19 10:26:22 +01:00
2018-01-04 03:12:44 +01:00
// Intelligent resuming
#if ENABLED(FWRETRACT)
// If retracted before goto pause
2018-01-04 23:42:56 +01:00
if (fwretract.retracted[active_extruder])
do_pause_e_move(-fwretract.retract_length, fwretract.retract_feedrate_mm_s);
2018-01-04 03:12:44 +01:00
#endif
2017-03-19 10:26:22 +01:00
// If resume_position is negative
2018-09-09 04:17:02 +02:00
if (resume_position[E_CART] < 0) do_pause_e_move(resume_position[E_CART], PAUSE_PARK_RETRACT_FEEDRATE);
2017-03-19 10:26:22 +01:00
// Move XY to starting position, then Z
do_blocking_move_to_xy(resume_position[X_AXIS], resume_position[Y_AXIS], NOZZLE_PARK_XY_FEEDRATE);
2018-01-04 03:12:44 +01:00
// Set Z_AXIS to saved position
do_blocking_move_to_z(resume_position[Z_AXIS], NOZZLE_PARK_Z_FEEDRATE);
2017-03-19 10:26:22 +01:00
2018-01-04 03:12:44 +01:00
// Now all extrusion positions are resumed and ready to be confirmed
// Set extruder to saved position
2018-09-09 04:17:02 +02:00
planner.set_e_position_mm((destination[E_CART] = current_position[E_CART] = resume_position[E_CART]));
2018-01-04 03:12:44 +01:00
2017-03-19 10:26:22 +01:00
#if ENABLED(FILAMENT_RUNOUT_SENSOR)
runout.reset();
2017-03-19 10:26:22 +01:00
#endif
#if ENABLED(ULTIPANEL)
// Show status screen
lcd_advanced_pause_show_message(ADVANCED_PAUSE_MESSAGE_STATUS);
#endif
#ifdef ACTION_ON_RESUME
SERIAL_ECHOLNPGM("//action:" ACTION_ON_RESUME);
#endif
--did_pause_print;
#if ENABLED(SDSUPPORT)
if (did_pause_print) {
card.startFileprint();
--did_pause_print;
}
#endif
}
2017-12-27 05:51:55 +01:00
#endif // ADVANCED_PAUSE_FEATURE
2017-03-19 10:26:22 +01:00
#if ENABLED(SDSUPPORT)
/**
* M20: List SD card to serial output
*/
inline void gcode_M20() {
SERIAL_PROTOCOLLNPGM(MSG_BEGIN_FILE_LIST);
card.ls();
SERIAL_PROTOCOLLNPGM(MSG_END_FILE_LIST);
}
/**
* M21: Init SD Card
*/
inline void gcode_M21() { card.initsd(); }
/**
* M22: Release SD Card
*/
inline void gcode_M22() { card.release(); }
/**
2016-02-21 02:35:35 +01:00
* M23: Open a file
*/
inline void gcode_M23() {
#if ENABLED(POWER_LOSS_RECOVERY)
card.removeJobRecoveryFile();
#endif
// Simplify3D includes the size, so zero out all spaces (#7227)
for (char *fn = parser.string_arg; *fn; ++fn) if (*fn == ' ') *fn = '\0';
2017-07-07 04:24:30 +02:00
card.openFile(parser.string_arg, true);
}
/**
2017-03-19 10:26:22 +01:00
* M24: Start or Resume SD Print
*/
inline void gcode_M24() {
2017-03-19 10:26:22 +01:00
#if ENABLED(PARK_HEAD_ON_PAUSE)
resume_print();
2017-03-19 10:26:22 +01:00
#endif
#if ENABLED(POWER_LOSS_RECOVERY)
if (parser.seenval('S')) card.setIndex(parser.value_long());
#endif
card.startFileprint();
#if ENABLED(POWER_LOSS_RECOVERY)
if (parser.seenval('T'))
print_job_timer.resume(parser.value_long());
else
#endif
print_job_timer.start();
}
/**
* M25: Pause SD Print
*/
2017-03-19 10:26:22 +01:00
inline void gcode_M25() {
card.pauseSDPrint();
print_job_timer.pause();
#if ENABLED(PARK_HEAD_ON_PAUSE)
enqueue_and_echo_commands_P(PSTR("M125")); // Must be enqueued with pauseSDPrint set to be last in the buffer
#endif
}
/**
* M26: Set SD Card file index
*/
inline void gcode_M26() {
2017-06-27 06:31:45 +02:00
if (card.cardOK && parser.seenval('S'))
2017-05-20 10:03:08 +02:00
card.setIndex(parser.value_long());
}
/**
* M27: Get SD Card status
* OR, with 'S<seconds>' set the SD status auto-report interval. (Requires AUTO_REPORT_SD_STATUS)
* OR, with 'C' get the current filename.
*/
inline void gcode_M27() {
if (parser.seen('C')) {
SERIAL_ECHOPGM("Current file: ");
card.printFilename();
}
#if ENABLED(AUTO_REPORT_SD_STATUS)
else if (parser.seenval('S'))
card.set_auto_report_interval(parser.value_byte());
#endif
else
card.getStatus();
}
/**
* M28: Start SD Write
*/
2017-05-20 10:03:08 +02:00
inline void gcode_M28() { card.openFile(parser.string_arg, false); }
/**
* M29: Stop SD Write
* Processed in write to file routine above
*/
inline void gcode_M29() {
// card.saving = false;
}
/**
* M30 <filename>: Delete SD Card file
*/
inline void gcode_M30() {
if (card.cardOK) {
card.closefile();
2017-05-20 10:03:08 +02:00
card.removeFile(parser.string_arg);
}
}
#endif // SDSUPPORT
/**
* M31: Get the time since the start of SD Print (or last M109)
*/
inline void gcode_M31() {
char buffer[21];
2016-07-24 04:13:35 +02:00
duration_t elapsed = print_job_timer.duration();
elapsed.toString(buffer);
lcd_setstatus(buffer);
2016-07-13 21:57:59 +02:00
2017-06-09 17:51:23 +02:00
SERIAL_ECHO_START();
2016-09-13 00:49:35 +02:00
SERIAL_ECHOLNPAIR("Print time: ", buffer);
}
#if ENABLED(SDSUPPORT)
/**
* M32: Select file and start SD Print
2017-11-15 05:49:33 +01:00
*
* Examples:
*
* M32 !PATH/TO/FILE.GCO# ; Start FILE.GCO
* M32 P !PATH/TO/FILE.GCO# ; Start FILE.GCO as a procedure
* M32 S60 !PATH/TO/FILE.GCO# ; Start FILE.GCO at byte 60
*
*/
2017-05-20 10:03:08 +02:00
inline void gcode_M32() {
if (card.sdprinting) planner.synchronize();
if (card.cardOK) {
2017-11-15 05:49:33 +01:00
const bool call_procedure = parser.boolval('P');
card.openFile(parser.string_arg, true, call_procedure);
2017-11-15 05:49:33 +01:00
if (parser.seenval('S')) card.setIndex(parser.value_long());
card.startFileprint();
// Procedure calls count as normal print time.
if (!call_procedure) print_job_timer.start();
}
}
#if ENABLED(LONG_FILENAME_HOST_SUPPORT)
2015-05-18 02:36:32 +02:00
/**
* M33: Get the long full path of a file or folder
*
* Parameters:
* <dospath> Case-insensitive DOS-style path to a file or folder
*
* Example:
* M33 miscel~1/armchair/armcha~1.gco
*
* Output:
* /Miscellaneous/Armchair/Armchair.gcode
*/
inline void gcode_M33() {
2017-05-20 10:03:08 +02:00
card.printLongPath(parser.string_arg);
2015-05-18 02:36:32 +02:00
}
#endif
2017-02-09 14:02:25 +01:00
#if ENABLED(SDCARD_SORT_ALPHA) && ENABLED(SDSORT_GCODE)
/**
* M34: Set SD Card Sorting Options
*/
inline void gcode_M34() {
2017-05-20 10:03:08 +02:00
if (parser.seen('S')) card.setSortOn(parser.value_bool());
2017-06-27 06:31:45 +02:00
if (parser.seenval('F')) {
const int v = parser.value_long();
2017-02-09 14:02:25 +01:00
card.setSortFolders(v < 0 ? -1 : v > 0 ? 1 : 0);
}
2017-05-20 10:03:08 +02:00
//if (parser.seen('R')) card.setSortReverse(parser.value_bool());
2017-02-09 14:02:25 +01:00
}
#endif // SDCARD_SORT_ALPHA && SDSORT_GCODE
/**
* M928: Start SD Write
*/
inline void gcode_M928() {
2017-05-20 10:03:08 +02:00
card.openLogFile(parser.string_arg);
}
#endif // SDSUPPORT
2016-10-05 08:50:36 +02:00
/**
* Sensitive pin test for M42, M226
*/
2018-02-09 03:42:12 +01:00
static bool pin_is_protected(const pin_t pin) {
static const pin_t sensitive_pins[] PROGMEM = SENSITIVE_PINS;
2016-10-05 08:50:36 +02:00
for (uint8_t i = 0; i < COUNT(sensitive_pins); i++)
2018-02-09 03:42:12 +01:00
if (pin == (pin_t)pgm_read_byte(&sensitive_pins[i])) return true;
2016-10-05 08:50:36 +02:00
return false;
}
2018-06-11 00:39:48 +02:00
inline void protected_pin_err() {
SERIAL_ERROR_START();
SERIAL_ERRORLNPGM(MSG_ERR_PROTECTED_PIN);
}
/**
* M42: Change pin status via GCode
*
* P<pin> Pin number (LED if omitted)
* S<byte> Pin status from 0 - 255
* I Flag to ignore Marlin's pin protection
*/
inline void gcode_M42() {
2017-06-27 06:31:45 +02:00
if (!parser.seenval('S')) return;
const byte pin_status = parser.value_byte();
2018-02-09 03:42:12 +01:00
const pin_t pin_number = parser.byteval('P', LED_PIN);
if (pin_number < 0) return;
2016-03-06 03:27:45 +01:00
if (!parser.boolval('I') && pin_is_protected(pin_number)) return protected_pin_err();
2016-03-06 03:27:45 +01:00
pinMode(pin_number, OUTPUT);
digitalWrite(pin_number, pin_status);
analogWrite(pin_number, pin_status);
#if FAN_COUNT > 0
switch (pin_number) {
#if HAS_FAN0
case FAN_PIN: fanSpeeds[0] = pin_status; break;
#endif
#if HAS_FAN1
case FAN1_PIN: fanSpeeds[1] = pin_status; break;
#endif
#if HAS_FAN2
case FAN2_PIN: fanSpeeds[2] = pin_status; break;
#endif
}
#endif
}
2016-10-05 12:50:22 +02:00
#if ENABLED(PINS_DEBUGGING)
#include "pinsDebug.h"
inline void toggle_pins() {
2018-06-11 00:39:48 +02:00
const bool ignore_protection = parser.boolval('I');
const int repeat = parser.intval('R', 1),
start = parser.intval('S'),
end = parser.intval('L', NUM_DIGITAL_PINS - 1),
wait = parser.intval('W', 500);
2017-04-18 21:37:10 +02:00
for (uint8_t pin = start; pin <= end; pin++) {
2018-06-11 00:39:48 +02:00
//report_pin_state_extended(pin, ignore_protection, false);
2017-06-09 01:08:30 +02:00
2018-06-11 00:39:48 +02:00
if (!ignore_protection && pin_is_protected(pin)) {
report_pin_state_extended(pin, ignore_protection, true, "Untouched ");
2017-06-09 01:08:30 +02:00
SERIAL_EOL();
2017-04-18 21:37:10 +02:00
}
else {
2018-06-11 00:39:48 +02:00
report_pin_state_extended(pin, ignore_protection, true, "Pulsing ");
#if AVR_AT90USB1286_FAMILY // Teensy IDEs don't know about these pins so must use FASTIO
2017-07-07 04:47:50 +02:00
if (pin == TEENSY_E2) {
SET_OUTPUT(TEENSY_E2);
2017-06-09 01:08:30 +02:00
for (int16_t j = 0; j < repeat; j++) {
2017-07-07 04:47:50 +02:00
WRITE(TEENSY_E2, LOW); safe_delay(wait);
WRITE(TEENSY_E2, HIGH); safe_delay(wait);
WRITE(TEENSY_E2, LOW); safe_delay(wait);
2017-06-09 01:08:30 +02:00
}
}
2017-07-07 04:47:50 +02:00
else if (pin == TEENSY_E3) {
SET_OUTPUT(TEENSY_E3);
2017-06-09 01:08:30 +02:00
for (int16_t j = 0; j < repeat; j++) {
2017-07-07 04:47:50 +02:00
WRITE(TEENSY_E3, LOW); safe_delay(wait);
WRITE(TEENSY_E3, HIGH); safe_delay(wait);
WRITE(TEENSY_E3, LOW); safe_delay(wait);
2017-06-09 01:08:30 +02:00
}
}
else
#endif
{
pinMode(pin, OUTPUT);
for (int16_t j = 0; j < repeat; j++) {
digitalWrite(pin, 0); safe_delay(wait);
digitalWrite(pin, 1); safe_delay(wait);
digitalWrite(pin, 0); safe_delay(wait);
}
}
2017-06-09 01:08:30 +02:00
2017-04-18 21:37:10 +02:00
}
2017-06-09 01:08:30 +02:00
SERIAL_EOL();
}
2017-04-18 21:37:10 +02:00
SERIAL_ECHOLNPGM("Done.");
2017-04-08 09:00:23 +02:00
} // toggle_pins
2017-04-18 21:37:10 +02:00
inline void servo_probe_test() {
#if !(NUM_SERVOS > 0 && HAS_SERVO_0)
2017-06-09 17:51:23 +02:00
SERIAL_ERROR_START();
SERIAL_ERRORLNPGM("SERVO not setup");
2017-04-18 21:37:10 +02:00
2018-04-02 06:51:12 +02:00
#elif !HAS_Z_SERVO_PROBE
2017-04-18 21:37:10 +02:00
2017-06-09 17:51:23 +02:00
SERIAL_ERROR_START();
2018-04-02 06:51:12 +02:00
SERIAL_ERRORLNPGM("Z_PROBE_SERVO_NR not setup");
2017-04-18 21:37:10 +02:00
2018-04-02 06:51:12 +02:00
#else // HAS_Z_SERVO_PROBE
2017-04-18 21:37:10 +02:00
2018-04-02 06:51:12 +02:00
const uint8_t probe_index = parser.byteval('P', Z_PROBE_SERVO_NR);
2017-04-18 21:37:10 +02:00
SERIAL_PROTOCOLLNPGM("Servo probe test");
SERIAL_PROTOCOLLNPAIR(". using index: ", probe_index);
SERIAL_PROTOCOLLNPAIR(". deploy angle: ", z_servo_angle[0]);
SERIAL_PROTOCOLLNPAIR(". stow angle: ", z_servo_angle[1]);
2017-04-18 21:37:10 +02:00
bool probe_inverting;
2017-04-18 21:37:10 +02:00
#if ENABLED(Z_MIN_PROBE_USES_Z_MIN_ENDSTOP_PIN)
2017-04-18 21:37:10 +02:00
#define PROBE_TEST_PIN Z_MIN_PIN
2017-04-18 21:37:10 +02:00
SERIAL_PROTOCOLLNPAIR(". probe uses Z_MIN pin: ", PROBE_TEST_PIN);
SERIAL_PROTOCOLLNPGM(". uses Z_MIN_ENDSTOP_INVERTING (ignores Z_MIN_PROBE_ENDSTOP_INVERTING)");
SERIAL_PROTOCOLPGM(". Z_MIN_ENDSTOP_INVERTING: ");
2017-04-18 21:37:10 +02:00
#if Z_MIN_ENDSTOP_INVERTING
SERIAL_PROTOCOLLNPGM("true");
#else
SERIAL_PROTOCOLLNPGM("false");
#endif
probe_inverting = Z_MIN_ENDSTOP_INVERTING;
2017-04-18 21:37:10 +02:00
#elif ENABLED(Z_MIN_PROBE_ENDSTOP)
2017-04-18 21:37:10 +02:00
#define PROBE_TEST_PIN Z_MIN_PROBE_PIN
SERIAL_PROTOCOLLNPAIR(". probe uses Z_MIN_PROBE_PIN: ", PROBE_TEST_PIN);
SERIAL_PROTOCOLLNPGM(". uses Z_MIN_PROBE_ENDSTOP_INVERTING (ignores Z_MIN_ENDSTOP_INVERTING)");
SERIAL_PROTOCOLPGM(". Z_MIN_PROBE_ENDSTOP_INVERTING: ");
2017-04-18 21:37:10 +02:00
#if Z_MIN_PROBE_ENDSTOP_INVERTING
SERIAL_PROTOCOLLNPGM("true");
#else
SERIAL_PROTOCOLLNPGM("false");
#endif
probe_inverting = Z_MIN_PROBE_ENDSTOP_INVERTING;
2017-04-18 21:37:10 +02:00
#endif
2017-04-18 21:37:10 +02:00
SERIAL_PROTOCOLLNPGM(". deploy & stow 4 times");
2017-05-29 01:59:34 +02:00
SET_INPUT_PULLUP(PROBE_TEST_PIN);
bool deploy_state, stow_state;
for (uint8_t i = 0; i < 4; i++) {
2017-08-15 06:52:23 +02:00
MOVE_SERVO(probe_index, z_servo_angle[0]); //deploy
safe_delay(500);
deploy_state = READ(PROBE_TEST_PIN);
2017-08-15 06:52:23 +02:00
MOVE_SERVO(probe_index, z_servo_angle[1]); //stow
safe_delay(500);
stow_state = READ(PROBE_TEST_PIN);
}
if (probe_inverting != deploy_state) SERIAL_PROTOCOLLNPGM("WARNING - INVERTING setting probably backwards");
2017-04-18 21:37:10 +02:00
if (deploy_state != stow_state) {
SERIAL_PROTOCOLLNPGM("BLTouch clone detected");
if (deploy_state) {
SERIAL_PROTOCOLLNPGM(". DEPLOYED state: HIGH (logic 1)");
SERIAL_PROTOCOLLNPGM(". STOWED (triggered) state: LOW (logic 0)");
}
else {
SERIAL_PROTOCOLLNPGM(". DEPLOYED state: LOW (logic 0)");
SERIAL_PROTOCOLLNPGM(". STOWED (triggered) state: HIGH (logic 1)");
}
#if ENABLED(BLTOUCH)
SERIAL_PROTOCOLLNPGM("ERROR: BLTOUCH enabled - set this device up as a Z Servo Probe with inverting as true.");
#endif
}
else { // measure active signal length
2017-08-15 06:52:23 +02:00
MOVE_SERVO(probe_index, z_servo_angle[0]); // deploy
safe_delay(500);
SERIAL_PROTOCOLLNPGM("please trigger probe");
uint16_t probe_counter = 0;
2017-04-18 21:37:10 +02:00
// Allow 30 seconds max for operator to trigger probe
for (uint16_t j = 0; j < 500 * 30 && probe_counter == 0 ; j++) {
safe_delay(2);
2017-04-18 21:37:10 +02:00
if (0 == j % (500 * 1)) reset_stepper_timeout(); // Keep steppers powered
2017-04-18 21:37:10 +02:00
if (deploy_state != READ(PROBE_TEST_PIN)) { // probe triggered
2017-04-18 21:37:10 +02:00
for (probe_counter = 1; probe_counter < 50 && deploy_state != READ(PROBE_TEST_PIN); ++probe_counter)
safe_delay(2);
2017-04-18 21:37:10 +02:00
if (probe_counter == 50)
SERIAL_PROTOCOLLNPGM("Z Servo Probe detected"); // >= 100mS active time
else if (probe_counter >= 2)
SERIAL_PROTOCOLLNPAIR("BLTouch compatible probe detected - pulse width (+/- 4mS): ", probe_counter * 2); // allow 4 - 100mS pulse
else
SERIAL_PROTOCOLLNPGM("noise detected - please re-run test"); // less than 2mS pulse
2017-08-15 06:52:23 +02:00
MOVE_SERVO(probe_index, z_servo_angle[1]); //stow
2017-04-18 21:37:10 +02:00
} // pulse detected
2017-04-18 21:37:10 +02:00
} // for loop waiting for trigger
if (probe_counter == 0) SERIAL_PROTOCOLLNPGM("trigger not detected");
2017-04-18 21:37:10 +02:00
} // measure active signal length
#endif
2017-04-18 21:37:10 +02:00
2017-04-08 08:53:22 +02:00
} // servo_probe_test
2016-10-05 12:50:22 +02:00
/**
* M43: Pin debug - report pin state, watch pins, toggle pins and servo probe test/report
*
* M43 - report name and state of pin(s)
* P<pin> Pin to read or watch. If omitted, reads all pins.
* I Flag to ignore Marlin's pin protection.
2016-10-05 12:50:22 +02:00
*
* M43 W - Watch pins -reporting changes- until reset, click, or M108.
* P<pin> Pin to read or watch. If omitted, read/watch all pins.
* I Flag to ignore Marlin's pin protection.
2016-10-31 02:10:17 +01:00
*
* M43 E<bool> - Enable / disable background endstop monitoring
* - Machine continues to operate
* - Reports changes to endstops
2017-06-09 01:08:30 +02:00
* - Toggles LED_PIN when an endstop changes
* - Can not reliably catch the 5mS pulse from BLTouch type probes
2016-10-31 02:10:17 +01:00
*
* M43 T - Toggle pin(s) and report which pin is being toggled
* S<pin> - Start Pin number. If not given, will default to 0
* L<pin> - End Pin number. If not given, will default to last pin defined for this board
2017-06-09 01:08:30 +02:00
* I<bool> - Flag to ignore Marlin's pin protection. Use with caution!!!!
* R - Repeat pulses on each pin this number of times before continueing to next pin
* W - Wait time (in miliseconds) between pulses. If not given will default to 500
*
* M43 S - Servo probe test
* P<index> - Probe index (optional - defaults to 0
2016-10-05 12:50:22 +02:00
*/
inline void gcode_M43() {
2016-10-31 02:10:17 +01:00
2017-06-27 09:36:19 +02:00
if (parser.seen('T')) { // must be first or else its "S" and "E" parameters will execute endstop or servo test
toggle_pins();
return;
}
2016-10-31 02:10:17 +01:00
// Enable or disable endstop monitoring
2017-05-20 10:03:08 +02:00
if (parser.seen('E')) {
endstop_monitor_flag = parser.value_bool();
2016-10-31 02:10:17 +01:00
SERIAL_PROTOCOLPGM("endstop monitor ");
2017-07-07 04:47:50 +02:00
serialprintPGM(endstop_monitor_flag ? PSTR("en") : PSTR("dis"));
2016-10-31 02:10:17 +01:00
SERIAL_PROTOCOLLNPGM("abled");
return;
}
2017-05-20 10:03:08 +02:00
if (parser.seen('S')) {
servo_probe_test();
return;
}
2016-10-31 02:10:17 +01:00
// Get the range of pins to test or watch
2018-02-09 03:42:12 +01:00
const pin_t first_pin = parser.byteval('P'),
last_pin = parser.seenval('P') ? first_pin : NUM_DIGITAL_PINS - 1;
2017-04-18 21:37:10 +02:00
if (first_pin > last_pin) return;
2016-10-05 12:50:22 +02:00
const bool ignore_protection = parser.boolval('I');
2016-10-31 02:10:17 +01:00
// Watch until click, M108, or reset
if (parser.boolval('W')) {
SERIAL_PROTOCOLLNPGM("Watching pins");
2016-10-05 12:50:22 +02:00
byte pin_state[last_pin - first_pin + 1];
2018-02-09 03:42:12 +01:00
for (pin_t pin = first_pin; pin <= last_pin; pin++) {
2018-06-11 00:39:48 +02:00
if (!ignore_protection && pin_is_protected(pin)) continue;
2016-10-05 12:50:22 +02:00
pinMode(pin, INPUT_PULLUP);
2017-06-09 01:08:30 +02:00
delay(1);
2017-04-18 21:37:10 +02:00
/*
if (IS_ANALOG(pin))
pin_state[pin - first_pin] = analogRead(pin - analogInputToDigitalPin(0)); // int16_t pin_state[...]
else
//*/
pin_state[pin - first_pin] = digitalRead(pin);
2016-10-05 12:50:22 +02:00
}
#if HAS_RESUME_CONTINUE
2016-10-05 12:50:22 +02:00
wait_for_user = true;
2017-04-18 21:37:10 +02:00
KEEPALIVE_STATE(PAUSED_FOR_USER);
2016-10-05 12:50:22 +02:00
#endif
2017-04-18 21:37:10 +02:00
for (;;) {
2018-02-09 03:42:12 +01:00
for (pin_t pin = first_pin; pin <= last_pin; pin++) {
2018-06-11 00:39:48 +02:00
if (!ignore_protection && pin_is_protected(pin)) continue;
2017-04-18 21:37:10 +02:00
const byte val =
/*
IS_ANALOG(pin)
? analogRead(pin - analogInputToDigitalPin(0)) : // int16_t val
:
//*/
digitalRead(pin);
2016-10-05 12:50:22 +02:00
if (val != pin_state[pin - first_pin]) {
2017-06-09 01:08:30 +02:00
report_pin_state_extended(pin, ignore_protection, false);
2016-10-05 12:50:22 +02:00
pin_state[pin - first_pin] = val;
}
}
#if HAS_RESUME_CONTINUE
2017-04-18 21:37:10 +02:00
if (!wait_for_user) {
KEEPALIVE_STATE(IN_HANDLER);
break;
}
2016-10-05 12:50:22 +02:00
#endif
2017-06-09 01:08:30 +02:00
safe_delay(200);
2016-10-05 12:50:22 +02:00
}
2016-10-31 02:10:17 +01:00
return;
2016-10-05 12:50:22 +02:00
}
2016-10-31 02:10:17 +01:00
// Report current state of selected pin(s)
2018-02-09 03:42:12 +01:00
for (pin_t pin = first_pin; pin <= last_pin; pin++)
2017-06-09 01:08:30 +02:00
report_pin_state_extended(pin, ignore_protection, true);
2016-10-05 12:50:22 +02:00
}
#endif // PINS_DEBUGGING
#if ENABLED(Z_MIN_PROBE_REPEATABILITY_TEST)
/**
* M48: Z probe repeatability measurement function.
*
* Usage:
2018-02-14 12:17:48 +01:00
* M48 <P#> <X#> <Y#> <V#> <E> <L#> <S>
* P = Number of sampled points (4-50, default 10)
* X = Sample X position
* Y = Sample Y position
* V = Verbose level (0-4, default=1)
* E = Engage Z probe for each reading
* L = Number of legs of movement before probe
* S = Schizoid (Or Star if you prefer)
2015-08-05 13:40:36 +02:00
*
2017-11-07 22:38:40 +01:00
* This function requires the machine to be homed before invocation.
*/
inline void gcode_M48() {
2017-05-14 22:57:37 +02:00
if (axis_unhomed_error()) return;
2016-03-03 04:55:01 +01:00
const int8_t verbose_level = parser.byteval('V', 1);
2017-03-31 16:00:49 +02:00
if (!WITHIN(verbose_level, 0, 4)) {
SERIAL_PROTOCOLLNPGM("?(V)erbose level is implausible (0-4).");
2016-06-18 10:41:57 +02:00
return;
}
2015-03-06 23:54:30 +01:00
if (verbose_level > 0)
SERIAL_PROTOCOLLNPGM("M48 Z-Probe Repeatability Test");
const int8_t n_samples = parser.byteval('P', 10);
2017-03-31 16:00:49 +02:00
if (!WITHIN(n_samples, 4, 50)) {
SERIAL_PROTOCOLLNPGM("?Sample size not plausible (4-50).");
2016-06-18 10:41:57 +02:00
return;
}
const ProbePtRaise raise_after = parser.boolval('E') ? PROBE_PT_STOW : PROBE_PT_RAISE;
2017-05-20 10:03:08 +02:00
float X_current = current_position[X_AXIS],
Y_current = current_position[Y_AXIS];
const float X_probe_location = parser.linearval('X', X_current + X_PROBE_OFFSET_FROM_EXTRUDER),
Y_probe_location = parser.linearval('Y', Y_current + Y_PROBE_OFFSET_FROM_EXTRUDER);
if (!position_is_reachable_by_probe(X_probe_location, Y_probe_location)) {
SERIAL_PROTOCOLLNPGM("? (X,Y) out of bounds.");
return;
}
2017-05-20 10:03:08 +02:00
bool seen_L = parser.seen('L');
uint8_t n_legs = seen_L ? parser.value_byte() : 0;
if (n_legs > 15) {
SERIAL_PROTOCOLLNPGM("?Number of legs in movement not plausible (0-15).");
2016-06-18 10:41:57 +02:00
return;
}
2016-06-18 10:41:57 +02:00
if (n_legs == 1) n_legs = 2;
const bool schizoid_flag = parser.boolval('S');
2016-06-18 10:41:57 +02:00
if (schizoid_flag && !seen_L) n_legs = 7;
2016-03-27 05:36:36 +02:00
/**
* Now get everything to the specified probe point So we can safely do a
* probe to get us close to the bed. If the Z-Axis is far from the bed,
* we don't want to use that as a starting point for each probe.
*/
if (verbose_level > 2)
SERIAL_PROTOCOLLNPGM("Positioning the probe...");
2016-09-15 20:34:24 +02:00
// Disable bed level correction in M48 because we want the raw data when we probe
#if HAS_LEVELING
const bool was_enabled = planner.leveling_active;
2016-12-10 08:55:09 +01:00
set_bed_leveling_enabled(false);
#endif
setup_for_endstop_or_probe_move();
float mean = 0.0, sigma = 0.0, min = 99999.9, max = -99999.9, sample_set[n_samples];
2016-06-24 04:22:45 +02:00
// Move to the first point, deploy, and probe
const float t = probe_pt(X_probe_location, Y_probe_location, raise_after, verbose_level);
2017-08-11 23:59:32 +02:00
bool probing_good = !isnan(t);
if (probing_good) {
randomSeed(millis());
for (uint8_t n = 0; n < n_samples; n++) {
if (n_legs) {
const int dir = (random(0, 10) > 5.0) ? -1 : 1; // clockwise or counter clockwise
float angle = random(0.0, 360.0);
const float radius = random(
#if ENABLED(DELTA)
0.1250000000 * (DELTA_PRINTABLE_RADIUS),
0.3333333333 * (DELTA_PRINTABLE_RADIUS)
2017-08-11 23:59:32 +02:00
#else
5.0, 0.125 * MIN(X_BED_SIZE, Y_BED_SIZE)
2017-08-11 23:59:32 +02:00
#endif
);
2017-08-11 23:59:32 +02:00
if (verbose_level > 3) {
SERIAL_ECHOPAIR("Starting radius: ", radius);
SERIAL_ECHOPAIR(" angle: ", angle);
SERIAL_ECHOPGM(" Direction: ");
if (dir > 0) SERIAL_ECHOPGM("Counter-");
SERIAL_ECHOLNPGM("Clockwise");
}
2017-08-11 23:59:32 +02:00
for (uint8_t l = 0; l < n_legs - 1; l++) {
float delta_angle;
2016-03-27 05:36:36 +02:00
2017-08-11 23:59:32 +02:00
if (schizoid_flag)
// The points of a 5 point star are 72 degrees apart. We need to
// skip a point and go to the next one on the star.
delta_angle = dir * 2.0 * 72.0;
2016-03-27 05:36:36 +02:00
2017-08-11 23:59:32 +02:00
else
// If we do this line, we are just trying to move further
// around the circle.
delta_angle = dir * (float) random(25, 45);
2016-03-27 05:36:36 +02:00
2017-08-11 23:59:32 +02:00
angle += delta_angle;
2016-03-27 05:36:36 +02:00
2017-08-11 23:59:32 +02:00
while (angle > 360.0) // We probably do not need to keep the angle between 0 and 2*PI, but the
angle -= 360.0; // Arduino documentation says the trig functions should not be given values
while (angle < 0.0) // outside of this range. It looks like they behave correctly with
angle += 360.0; // numbers outside of the range, but just to be safe we clamp them.
2016-03-27 05:36:36 +02:00
2017-08-11 23:59:32 +02:00
X_current = X_probe_location - (X_PROBE_OFFSET_FROM_EXTRUDER) + cos(RADIANS(angle)) * radius;
Y_current = Y_probe_location - (Y_PROBE_OFFSET_FROM_EXTRUDER) + sin(RADIANS(angle)) * radius;
2016-03-27 05:36:36 +02:00
2017-08-11 23:59:32 +02:00
#if DISABLED(DELTA)
X_current = constrain(X_current, X_MIN_POS, X_MAX_POS);
Y_current = constrain(Y_current, Y_MIN_POS, Y_MAX_POS);
#else
// If we have gone out too far, we can do a simple fix and scale the numbers
// back in closer to the origin.
2017-11-03 02:17:51 +01:00
while (!position_is_reachable_by_probe(X_current, Y_current)) {
2017-08-11 23:59:32 +02:00
X_current *= 0.8;
Y_current *= 0.8;
if (verbose_level > 3) {
SERIAL_ECHOPAIR("Pulling point towards center:", X_current);
SERIAL_ECHOLNPAIR(", ", Y_current);
}
}
2017-08-11 23:59:32 +02:00
#endif
if (verbose_level > 3) {
SERIAL_PROTOCOLPGM("Going to:");
SERIAL_ECHOPAIR(" X", X_current);
SERIAL_ECHOPAIR(" Y", Y_current);
SERIAL_ECHOLNPAIR(" Z", current_position[Z_AXIS]);
}
2017-08-11 23:59:32 +02:00
do_blocking_move_to_xy(X_current, Y_current);
} // n_legs loop
} // n_legs
2017-08-11 23:59:32 +02:00
// Probe a single point
sample_set[n] = probe_pt(X_probe_location, Y_probe_location, raise_after);
2017-08-11 23:59:32 +02:00
// Break the loop if the probe fails
probing_good = !isnan(sample_set[n]);
if (!probing_good) break;
2017-08-11 23:59:32 +02:00
/**
* Get the current mean for the data points we have so far
*/
float sum = 0.0;
2017-08-11 23:59:32 +02:00
for (uint8_t j = 0; j <= n; j++) sum += sample_set[j];
mean = sum / (n + 1);
2017-08-11 23:59:32 +02:00
NOMORE(min, sample_set[n]);
NOLESS(max, sample_set[n]);
2016-07-16 03:50:25 +02:00
2017-08-11 23:59:32 +02:00
/**
* Now, use that mean to calculate the standard deviation for the
* data points we have so far
*/
sum = 0.0;
for (uint8_t j = 0; j <= n; j++)
sum += sq(sample_set[j] - mean);
sigma = SQRT(sum / (n + 1));
if (verbose_level > 0) {
if (verbose_level > 1) {
SERIAL_PROTOCOL(n + 1);
SERIAL_PROTOCOLPGM(" of ");
SERIAL_PROTOCOL(int(n_samples));
2017-08-11 23:59:32 +02:00
SERIAL_PROTOCOLPGM(": z: ");
SERIAL_PROTOCOL_F(sample_set[n], 3);
if (verbose_level > 2) {
SERIAL_PROTOCOLPGM(" mean: ");
SERIAL_PROTOCOL_F(mean, 4);
SERIAL_PROTOCOLPGM(" sigma: ");
SERIAL_PROTOCOL_F(sigma, 6);
SERIAL_PROTOCOLPGM(" min: ");
SERIAL_PROTOCOL_F(min, 3);
SERIAL_PROTOCOLPGM(" max: ");
SERIAL_PROTOCOL_F(max, 3);
SERIAL_PROTOCOLPGM(" range: ");
SERIAL_PROTOCOL_F(max-min, 3);
}
SERIAL_EOL();
2016-06-19 00:38:15 +02:00
}
}
2016-06-18 12:16:13 +02:00
2017-08-11 23:59:32 +02:00
} // n_samples loop
}
2017-08-11 23:59:32 +02:00
STOW_PROBE();
2017-08-11 23:59:32 +02:00
if (probing_good) {
SERIAL_PROTOCOLLNPGM("Finished!");
2016-06-24 04:22:45 +02:00
2017-08-11 23:59:32 +02:00
if (verbose_level > 0) {
SERIAL_PROTOCOLPGM("Mean: ");
SERIAL_PROTOCOL_F(mean, 6);
SERIAL_PROTOCOLPGM(" Min: ");
SERIAL_PROTOCOL_F(min, 3);
SERIAL_PROTOCOLPGM(" Max: ");
SERIAL_PROTOCOL_F(max, 3);
SERIAL_PROTOCOLPGM(" Range: ");
SERIAL_PROTOCOL_F(max-min, 3);
SERIAL_EOL();
}
2017-08-11 23:59:32 +02:00
SERIAL_PROTOCOLPGM("Standard Deviation: ");
SERIAL_PROTOCOL_F(sigma, 6);
SERIAL_EOL();
2017-06-09 17:51:23 +02:00
SERIAL_EOL();
}
2016-06-22 00:32:28 +02:00
clean_up_after_endstop_or_probe_move();
2016-03-24 19:01:20 +01:00
// Re-enable bed level correction if it had been on
#if HAS_LEVELING
set_bed_leveling_enabled(was_enabled);
#endif
2018-04-30 09:59:11 +02:00
#ifdef Z_AFTER_PROBING
2018-03-21 00:04:22 +01:00
move_z_after_probing();
#endif
report_current_position();
}
#endif // Z_MIN_PROBE_REPEATABILITY_TEST
#if ENABLED(G26_MESH_VALIDATION)
inline void gcode_M49() {
g26_debug_flag ^= true;
SERIAL_PROTOCOLPGM("G26 Debug ");
2017-12-03 10:36:04 +01:00
serialprintPGM(g26_debug_flag ? PSTR("on.\n") : PSTR("off.\n"));
}
#endif // G26_MESH_VALIDATION
2017-10-15 08:40:34 +02:00
#if ENABLED(ULTRA_LCD) && ENABLED(LCD_SET_PROGRESS_MANUALLY)
/**
* M73: Set percentage complete (for display on LCD)
*
* Example:
* M73 P25 ; Set progress to 25%
*
* Notes:
* This has no effect during an SD print job
*/
inline void gcode_M73() {
if (!IS_SD_PRINTING && parser.seen('P')) {
progress_bar_percent = parser.value_byte();
NOMORE(progress_bar_percent, 100);
}
}
#endif // ULTRA_LCD && LCD_SET_PROGRESS_MANUALLY
/**
* M75: Start print timer
*/
inline void gcode_M75() { print_job_timer.start(); }
/**
* M76: Pause print timer
*/
inline void gcode_M76() { print_job_timer.pause(); }
/**
* M77: Stop print timer
*/
inline void gcode_M77() { print_job_timer.stop(); }
2016-04-27 03:13:27 +02:00
#if ENABLED(PRINTCOUNTER)
2016-07-19 04:27:42 +02:00
/**
2016-04-27 03:13:27 +02:00
* M78: Show print statistics
*/
inline void gcode_M78() {
// "M78 S78" will reset the statistics
if (parser.intval('S') == 78)
print_job_timer.initStats();
else
print_job_timer.showStats();
2016-04-27 03:13:27 +02:00
}
#endif
/**
* M104: Set hot end temperature
*/
inline void gcode_M104() {
if (get_target_extruder_from_command(104)) return;
2016-03-30 04:50:01 +02:00
if (DEBUGGING(DRYRUN)) return;
#if ENABLED(SINGLENOZZLE)
if (target_extruder != active_extruder) return;
#endif
2017-06-27 06:31:45 +02:00
if (parser.seenval('S')) {
2017-05-20 10:03:08 +02:00
const int16_t temp = parser.value_celsius();
thermalManager.setTargetHotend(temp, target_extruder);
#if ENABLED(DUAL_X_CARRIAGE)
2015-04-04 06:43:30 +02:00
if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
thermalManager.setTargetHotend(temp ? temp + duplicate_extruder_temp_offset : 0, 1);
2015-04-04 06:43:30 +02:00
#endif
2016-03-30 12:33:24 +02:00
#if ENABLED(PRINTJOB_TIMER_AUTOSTART)
/**
* Stop the timer at the end of print. Start is managed by 'heat and wait' M109.
* We use half EXTRUDE_MINTEMP here to allow nozzles to be put into hot
* standby mode, for instance in a dual extruder setup, without affecting
* the running print timer.
*/
2017-05-20 10:03:08 +02:00
if (parser.value_celsius() <= (EXTRUDE_MINTEMP) / 2) {
print_job_timer.stop();
lcd_reset_status();
}
#endif
2015-04-04 06:43:30 +02:00
}
2016-12-15 16:21:32 +01:00
#if ENABLED(AUTOTEMP)
planner.autotemp_M104_M109();
#endif
}
/**
* M105: Read hot end and bed temperature
*/
inline void gcode_M105() {
if (get_target_extruder_from_command(105)) return;
2018-03-07 07:50:02 +01:00
#if HAS_TEMP_SENSOR
SERIAL_PROTOCOLPGM(MSG_OK);
thermalManager.print_heaterstates();
#else // !HAS_TEMP_SENSOR
2017-06-09 17:51:23 +02:00
SERIAL_ERROR_START();
SERIAL_ERRORLNPGM(MSG_ERR_NO_THERMISTORS);
#endif
2017-06-09 17:51:23 +02:00
SERIAL_EOL();
}
2018-03-07 07:50:02 +01:00
#if ENABLED(AUTO_REPORT_TEMPERATURES)
/**
* M155: Set temperature auto-report interval. M155 S<seconds>
*/
inline void gcode_M155() {
if (parser.seenval('S'))
thermalManager.set_auto_report_interval(parser.value_byte());
}
#endif // AUTO_REPORT_TEMPERATURES
2016-03-06 03:27:45 +01:00
#if FAN_COUNT > 0
/**
* M106: Set Fan Speed
2016-03-06 03:27:45 +01:00
*
* S<int> Speed between 0-255
* P<index> Fan index, if more than one fan
2017-10-07 16:29:22 +02:00
*
* With EXTRA_FAN_SPEED enabled:
*
* T<int> Restore/Use/Set Temporary Speed:
* 1 = Restore previous speed after T2
* 2 = Use temporary speed set with T3-255
* 3-255 = Set the speed for use with T2
*/
2016-03-06 03:27:45 +01:00
inline void gcode_M106() {
2017-10-07 16:29:22 +02:00
const uint8_t p = parser.byteval('P');
if (p < FAN_COUNT) {
#if ENABLED(EXTRA_FAN_SPEED)
const int16_t t = parser.intval('T');
if (t > 0) {
switch (t) {
case 1:
fanSpeeds[p] = old_fanSpeeds[p];
break;
case 2:
old_fanSpeeds[p] = fanSpeeds[p];
fanSpeeds[p] = new_fanSpeeds[p];
break;
default:
new_fanSpeeds[p] = MIN(t, 255);
2017-10-07 16:29:22 +02:00
break;
}
return;
}
#endif // EXTRA_FAN_SPEED
const uint16_t s = parser.ushortval('S', 255);
2018-05-19 00:20:54 +02:00
fanSpeeds[p] = MIN(s, 255U);
2017-10-07 16:29:22 +02:00
}
2016-03-06 03:27:45 +01:00
}
/**
* M107: Fan Off
*/
2016-03-06 03:27:45 +01:00
inline void gcode_M107() {
const uint16_t p = parser.ushortval('P');
2016-03-06 03:27:45 +01:00
if (p < FAN_COUNT) fanSpeeds[p] = 0;
}
2016-03-06 03:27:45 +01:00
#endif // FAN_COUNT > 0
2014-12-20 17:33:43 +01:00
#if DISABLED(EMERGENCY_PARSER)
/**
* M108: Stop the waiting for heaters in M109, M190, M303. Does not affect the target temperature.
*/
inline void gcode_M108() { wait_for_heatup = false; }
2016-07-06 20:52:36 +02:00
/**
* M112: Emergency Stop
*/
inline void gcode_M112() { kill(PSTR(MSG_KILLED)); }
/**
* M410: Quickstop - Abort all planned moves
*
* This will stop the carriages mid-move, so most likely they
* will be out of sync with the stepper position after this.
*/
inline void gcode_M410() { quickstop_stepper(); }
2016-07-06 20:52:36 +02:00
#endif
/**
* M109: Sxxx Wait for extruder(s) to reach temperature. Waits only when heating.
* Rxxx Wait for extruder(s) to reach temperature. Waits when heating and cooling.
*/
2017-04-08 08:53:22 +02:00
#ifndef MIN_COOLING_SLOPE_DEG
#define MIN_COOLING_SLOPE_DEG 1.50
#endif
#ifndef MIN_COOLING_SLOPE_TIME
#define MIN_COOLING_SLOPE_TIME 60
#endif
inline void gcode_M109() {
2015-11-09 13:21:47 +01:00
if (get_target_extruder_from_command(109)) return;
2016-03-30 04:50:01 +02:00
if (DEBUGGING(DRYRUN)) return;
#if ENABLED(SINGLENOZZLE)
if (target_extruder != active_extruder) return;
#endif
2018-09-29 09:15:16 +02:00
const bool no_wait_for_cooling = parser.seenval('S'),
2018-09-29 21:46:08 +02:00
set_temp = no_wait_for_cooling || parser.seenval('R');
2018-09-29 09:15:16 +02:00
if (set_temp) {
2017-05-20 10:03:08 +02:00
const int16_t temp = parser.value_celsius();
thermalManager.setTargetHotend(temp, target_extruder);
#if ENABLED(DUAL_X_CARRIAGE)
2015-04-04 06:43:30 +02:00
if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
thermalManager.setTargetHotend(temp ? temp + duplicate_extruder_temp_offset : 0, 1);
#endif
#if ENABLED(PRINTJOB_TIMER_AUTOSTART)
/**
* Use half EXTRUDE_MINTEMP to allow nozzles to be put into hot
* standby mode, (e.g., in a dual extruder setup) without affecting
* the running print timer.
*/
2017-05-20 10:03:08 +02:00
if (parser.value_celsius() <= (EXTRUDE_MINTEMP) / 2) {
print_job_timer.stop();
lcd_reset_status();
}
else
print_job_timer.start();
#endif
2018-02-05 00:02:45 +01:00
#if ENABLED(ULTRA_LCD)
const bool heating = thermalManager.isHeatingHotend(target_extruder);
if (heating || !no_wait_for_cooling)
#if HOTENDS > 1
lcd_status_printf_P(0, heating ? PSTR("E%i " MSG_HEATING) : PSTR("E%i " MSG_COOLING), target_extruder + 1);
#else
lcd_setstatusPGM(heating ? PSTR("E " MSG_HEATING) : PSTR("E " MSG_COOLING));
#endif
2018-02-05 00:02:45 +01:00
#endif
}
#if ENABLED(AUTOTEMP)
planner.autotemp_M104_M109();
#endif
2018-09-29 09:15:16 +02:00
if (!set_temp) return;
#if TEMP_RESIDENCY_TIME > 0
2016-04-11 00:55:12 +02:00
millis_t residency_start_ms = 0;
// Loop until the temperature has stabilized
2016-04-11 00:55:12 +02:00
#define TEMP_CONDITIONS (!residency_start_ms || PENDING(now, residency_start_ms + (TEMP_RESIDENCY_TIME) * 1000UL))
#else
// Loop until the temperature is very close target
2016-04-29 03:18:13 +02:00
#define TEMP_CONDITIONS (wants_to_cool ? thermalManager.isCoolingHotend(target_extruder) : thermalManager.isHeatingHotend(target_extruder))
#endif
float target_temp = -1, old_temp = 9999;
bool wants_to_cool = false;
wait_for_heatup = true;
millis_t now, next_temp_ms = 0, next_cool_check_ms = 0;
#if DISABLED(BUSY_WHILE_HEATING)
KEEPALIVE_STATE(NOT_BUSY);
#endif
#if ENABLED(PRINTER_EVENT_LEDS)
const float start_temp = thermalManager.degHotend(target_extruder);
uint8_t old_blue = 0;
#endif
do {
2016-06-18 02:26:21 +02:00
// Target temperature might be changed during the loop
2017-04-09 03:45:06 +02:00
if (target_temp != thermalManager.degTargetHotend(target_extruder)) {
2016-06-18 02:26:21 +02:00
wants_to_cool = thermalManager.isCoolingHotend(target_extruder);
2017-04-09 03:45:06 +02:00
target_temp = thermalManager.degTargetHotend(target_extruder);
2016-06-18 02:26:21 +02:00
// Exit if S<lower>, continue if S<higher>, R<lower>, or R<higher>
if (no_wait_for_cooling && wants_to_cool) break;
}
now = millis();
2016-04-11 00:55:12 +02:00
if (ELAPSED(now, next_temp_ms)) { //Print temp & remaining time every 1s while waiting
next_temp_ms = now + 1000UL;
thermalManager.print_heaterstates();
#if TEMP_RESIDENCY_TIME > 0
SERIAL_PROTOCOLPGM(" W:");
2017-06-11 01:59:23 +02:00
if (residency_start_ms)
SERIAL_PROTOCOL(long((((TEMP_RESIDENCY_TIME) * 1000UL) - (now - residency_start_ms)) / 1000UL));
else
SERIAL_PROTOCOLCHAR('?');
#endif
2017-06-11 01:59:23 +02:00
SERIAL_EOL();
2013-03-25 05:35:05 +01:00
}
idle();
reset_stepper_timeout(); // Keep steppers powered
2017-04-09 03:45:06 +02:00
const float temp = thermalManager.degHotend(target_extruder);
#if ENABLED(PRINTER_EVENT_LEDS)
// Gradually change LED strip from violet to red as nozzle heats up
if (!wants_to_cool) {
const uint8_t blue = map(constrain(temp, start_temp, target_temp), start_temp, target_temp, 255, 0);
if (blue != old_blue) {
old_blue = blue;
2017-11-28 06:02:44 +01:00
leds.set_color(
MakeLEDColor(255, 0, blue, 0, pixels.getBrightness())
#if ENABLED(NEOPIXEL_IS_SEQUENTIAL)
, true
#endif
);
}
}
#endif
#if TEMP_RESIDENCY_TIME > 0
const float temp_diff = ABS(target_temp - temp);
2016-04-11 00:55:12 +02:00
if (!residency_start_ms) {
// Start the TEMP_RESIDENCY_TIME timer when we reach target temp for the first time.
2016-06-18 02:26:21 +02:00
if (temp_diff < TEMP_WINDOW) residency_start_ms = now;
}
else if (temp_diff > TEMP_HYSTERESIS) {
// Restart the timer whenever the temperature falls outside the hysteresis.
2016-06-18 02:26:21 +02:00
residency_start_ms = now;
}
#endif
// Prevent a wait-forever situation if R is misused i.e. M109 R0
if (wants_to_cool) {
// break after MIN_COOLING_SLOPE_TIME seconds
// if the temperature did not drop at least MIN_COOLING_SLOPE_DEG
if (!next_cool_check_ms || ELAPSED(now, next_cool_check_ms)) {
if (old_temp - temp < float(MIN_COOLING_SLOPE_DEG)) break;
next_cool_check_ms = now + 1000UL * MIN_COOLING_SLOPE_TIME;
old_temp = temp;
}
}
} while (wait_for_heatup && TEMP_CONDITIONS);
if (wait_for_heatup) {
lcd_reset_status();
#if ENABLED(PRINTER_EVENT_LEDS)
2017-11-28 06:02:44 +01:00
leds.set_white();
#endif
}
#if DISABLED(BUSY_WHILE_HEATING)
KEEPALIVE_STATE(IN_HANDLER);
#endif
}
#if HAS_HEATED_BED
/**
* M140: Set bed temperature
*/
inline void gcode_M140() {
if (DEBUGGING(DRYRUN)) return;
if (parser.seenval('S')) thermalManager.setTargetBed(parser.value_celsius());
}
#ifndef MIN_COOLING_SLOPE_DEG_BED
#define MIN_COOLING_SLOPE_DEG_BED 1.50
#endif
#ifndef MIN_COOLING_SLOPE_TIME_BED
#define MIN_COOLING_SLOPE_TIME_BED 60
#endif
/**
* M190: Sxxx Wait for bed current temp to reach target temp. Waits only when heating
* Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
*/
inline void gcode_M190() {
2016-03-30 04:50:01 +02:00
if (DEBUGGING(DRYRUN)) return;
2017-06-27 06:31:45 +02:00
const bool no_wait_for_cooling = parser.seenval('S');
if (no_wait_for_cooling || parser.seenval('R')) {
2017-05-20 10:03:08 +02:00
thermalManager.setTargetBed(parser.value_celsius());
2016-07-08 15:00:39 +02:00
#if ENABLED(PRINTJOB_TIMER_AUTOSTART)
2017-05-20 10:03:08 +02:00
if (parser.value_celsius() > BED_MINTEMP)
2016-07-08 15:00:39 +02:00
print_job_timer.start();
#endif
}
else return;
lcd_setstatusPGM(thermalManager.isHeatingBed() ? PSTR(MSG_BED_HEATING) : PSTR(MSG_BED_COOLING));
#if TEMP_BED_RESIDENCY_TIME > 0
millis_t residency_start_ms = 0;
// Loop until the temperature has stabilized
#define TEMP_BED_CONDITIONS (!residency_start_ms || PENDING(now, residency_start_ms + (TEMP_BED_RESIDENCY_TIME) * 1000UL))
#else
// Loop until the temperature is very close target
2016-04-29 03:18:13 +02:00
#define TEMP_BED_CONDITIONS (wants_to_cool ? thermalManager.isCoolingBed() : thermalManager.isHeatingBed())
#endif
2017-04-09 03:45:06 +02:00
float target_temp = -1.0, old_temp = 9999.0;
bool wants_to_cool = false;
wait_for_heatup = true;
millis_t now, next_temp_ms = 0, next_cool_check_ms = 0;
#if DISABLED(BUSY_WHILE_HEATING)
KEEPALIVE_STATE(NOT_BUSY);
#endif
target_extruder = active_extruder; // for print_heaterstates
#if ENABLED(PRINTER_EVENT_LEDS)
const float start_temp = thermalManager.degBed();
uint8_t old_red = 127;
#endif
do {
2016-06-18 02:26:21 +02:00
// Target temperature might be changed during the loop
2017-04-09 03:45:06 +02:00
if (target_temp != thermalManager.degTargetBed()) {
2016-06-18 02:26:21 +02:00
wants_to_cool = thermalManager.isCoolingBed();
2017-04-09 03:45:06 +02:00
target_temp = thermalManager.degTargetBed();
2016-06-18 02:26:21 +02:00
// Exit if S<lower>, continue if S<higher>, R<lower>, or R<higher>
if (no_wait_for_cooling && wants_to_cool) break;
}
now = millis();
2016-04-11 00:55:12 +02:00
if (ELAPSED(now, next_temp_ms)) { //Print Temp Reading every 1 second while heating up.
next_temp_ms = now + 1000UL;
thermalManager.print_heaterstates();
#if TEMP_BED_RESIDENCY_TIME > 0
SERIAL_PROTOCOLPGM(" W:");
2017-06-11 01:59:23 +02:00
if (residency_start_ms)
SERIAL_PROTOCOL(long((((TEMP_BED_RESIDENCY_TIME) * 1000UL) - (now - residency_start_ms)) / 1000UL));
else
SERIAL_PROTOCOLCHAR('?');
#endif
2017-06-11 01:59:23 +02:00
SERIAL_EOL();
}
2015-05-27 05:08:21 +02:00
idle();
reset_stepper_timeout(); // Keep steppers powered
2017-04-09 03:45:06 +02:00
const float temp = thermalManager.degBed();
#if ENABLED(PRINTER_EVENT_LEDS)
// Gradually change LED strip from blue to violet as bed heats up
if (!wants_to_cool) {
const uint8_t red = map(constrain(temp, start_temp, target_temp), start_temp, target_temp, 0, 255);
if (red != old_red) {
old_red = red;
2017-11-28 06:02:44 +01:00
leds.set_color(
MakeLEDColor(red, 0, 255, 0, pixels.getBrightness())
#if ENABLED(NEOPIXEL_IS_SEQUENTIAL)
, true
#endif
);
}
}
#endif
#if TEMP_BED_RESIDENCY_TIME > 0
const float temp_diff = ABS(target_temp - temp);
if (!residency_start_ms) {
// Start the TEMP_BED_RESIDENCY_TIME timer when we reach target temp for the first time.
2016-06-18 02:26:21 +02:00
if (temp_diff < TEMP_BED_WINDOW) residency_start_ms = now;
}
else if (temp_diff > TEMP_BED_HYSTERESIS) {
// Restart the timer whenever the temperature falls outside the hysteresis.
2016-06-18 02:26:21 +02:00
residency_start_ms = now;
}
2017-04-08 08:53:22 +02:00
#endif // TEMP_BED_RESIDENCY_TIME > 0
// Prevent a wait-forever situation if R is misused i.e. M190 R0
if (wants_to_cool) {
2017-04-08 08:53:22 +02:00
// Break after MIN_COOLING_SLOPE_TIME_BED seconds
// if the temperature did not drop at least MIN_COOLING_SLOPE_DEG_BED
if (!next_cool_check_ms || ELAPSED(now, next_cool_check_ms)) {
if (old_temp - temp < float(MIN_COOLING_SLOPE_DEG_BED)) break;
next_cool_check_ms = now + 1000UL * MIN_COOLING_SLOPE_TIME_BED;
old_temp = temp;
}
}
} while (wait_for_heatup && TEMP_BED_CONDITIONS);
if (wait_for_heatup) lcd_reset_status();
#if DISABLED(BUSY_WHILE_HEATING)
KEEPALIVE_STATE(IN_HANDLER);
#endif
}
#endif // HAS_HEATED_BED
/**
* M110: Set Current Line Number
*/
inline void gcode_M110() {
2017-06-27 06:31:45 +02:00
if (parser.seenval('N')) gcode_LastN = parser.value_long();
}
/**
* M111: Set the debug level
*/
inline void gcode_M111() {
if (parser.seen('S')) marlin_debug_flags = parser.byteval('S');
static const char str_debug_1[] PROGMEM = MSG_DEBUG_ECHO,
str_debug_2[] PROGMEM = MSG_DEBUG_INFO,
str_debug_4[] PROGMEM = MSG_DEBUG_ERRORS,
str_debug_8[] PROGMEM = MSG_DEBUG_DRYRUN,
str_debug_16[] PROGMEM = MSG_DEBUG_COMMUNICATION
#if ENABLED(DEBUG_LEVELING_FEATURE)
, str_debug_32[] PROGMEM = MSG_DEBUG_LEVELING
#endif
;
static const char* const debug_strings[] PROGMEM = {
2017-05-20 10:03:08 +02:00
str_debug_1, str_debug_2, str_debug_4, str_debug_8, str_debug_16
#if ENABLED(DEBUG_LEVELING_FEATURE)
2017-05-20 10:03:08 +02:00
, str_debug_32
#endif
};
2017-06-09 17:51:23 +02:00
SERIAL_ECHO_START();
SERIAL_ECHOPGM(MSG_DEBUG_PREFIX);
if (marlin_debug_flags) {
uint8_t comma = 0;
for (uint8_t i = 0; i < COUNT(debug_strings); i++) {
if (TEST(marlin_debug_flags, i)) {
2016-04-05 00:36:07 +02:00
if (comma++) SERIAL_CHAR(',');
serialprintPGM((char*)pgm_read_ptr(&debug_strings[i]));
}
}
}
else {
SERIAL_ECHOPGM(MSG_DEBUG_OFF);
#if !defined(__AVR__) || !defined(USBCON)
#if ENABLED(SERIAL_STATS_RX_BUFFER_OVERRUNS)
2018-06-11 00:55:48 +02:00
SERIAL_ECHOPAIR("\nBuffer Overruns: ", customizedSerial.buffer_overruns());
#endif
#if ENABLED(SERIAL_STATS_RX_FRAMING_ERRORS)
2018-06-11 00:55:48 +02:00
SERIAL_ECHOPAIR("\nFraming Errors: ", customizedSerial.framing_errors());
#endif
#if ENABLED(SERIAL_STATS_DROPPED_RX)
2018-06-11 00:55:48 +02:00
SERIAL_ECHOPAIR("\nDropped bytes: ", customizedSerial.dropped());
#endif
#if ENABLED(SERIAL_STATS_MAX_RX_QUEUED)
2018-06-11 00:55:48 +02:00
SERIAL_ECHOPAIR("\nMax RX Queue Size: ", customizedSerial.rxMaxEnqueued());
#endif
#endif // !__AVR__ || !USBCON
}
2017-06-09 17:51:23 +02:00
SERIAL_EOL();
}
2016-04-07 02:31:49 +02:00
#if ENABLED(HOST_KEEPALIVE_FEATURE)
/**
* M113: Get or set Host Keepalive interval (0 to disable)
*
* S<seconds> Optional. Set the keepalive interval.
*/
inline void gcode_M113() {
2017-06-27 06:31:45 +02:00
if (parser.seenval('S')) {
2017-05-20 10:03:08 +02:00
host_keepalive_interval = parser.value_byte();
2016-04-07 02:31:49 +02:00
NOMORE(host_keepalive_interval, 60);
}
else {
2017-06-09 17:51:23 +02:00
SERIAL_ECHO_START();
SERIAL_ECHOLNPAIR("M113 S", (unsigned long)host_keepalive_interval);
2016-04-07 02:31:49 +02:00
}
}
#endif
#if ENABLED(BARICUDA)
2015-04-04 00:31:35 +02:00
#if HAS_HEATER_1
/**
* M126: Heater 1 valve open
*/
inline void gcode_M126() { baricuda_valve_pressure = parser.byteval('S', 255); }
/**
* M127: Heater 1 valve close
*/
2016-04-18 08:12:15 +02:00
inline void gcode_M127() { baricuda_valve_pressure = 0; }
#endif
2015-04-04 00:31:35 +02:00
#if HAS_HEATER_2
/**
* M128: Heater 2 valve open
*/
inline void gcode_M128() { baricuda_e_to_p_pressure = parser.byteval('S', 255); }
/**
* M129: Heater 2 valve close
*/
2016-04-18 08:12:15 +02:00
inline void gcode_M129() { baricuda_e_to_p_pressure = 0; }
#endif
2017-05-09 19:35:43 +02:00
#endif // BARICUDA
#if ENABLED(ULTIPANEL)
/**
* M145: Set the heatup state for a material in the LCD menu
*
* S<material> (0=PLA, 1=ABS)
* H<hotend temp>
* B<bed temp>
* F<fan speed>
*/
inline void gcode_M145() {
const uint8_t material = (uint8_t)parser.intval('S');
2016-10-27 12:53:44 +02:00
if (material >= COUNT(lcd_preheat_hotend_temp)) {
2017-06-09 17:51:23 +02:00
SERIAL_ERROR_START();
SERIAL_ERRORLNPGM(MSG_ERR_MATERIAL_INDEX);
}
else {
int v;
2017-06-27 06:31:45 +02:00
if (parser.seenval('H')) {
2017-05-20 10:03:08 +02:00
v = parser.value_int();
lcd_preheat_hotend_temp[material] = constrain(v, EXTRUDE_MINTEMP, HEATER_0_MAXTEMP - 15);
}
2017-06-27 06:31:45 +02:00
if (parser.seenval('F')) {
2017-05-20 10:03:08 +02:00
v = parser.value_int();
lcd_preheat_fan_speed[material] = constrain(v, 0, 255);
}
#if TEMP_SENSOR_BED != 0
2017-06-27 06:31:45 +02:00
if (parser.seenval('B')) {
2017-05-20 10:03:08 +02:00
v = parser.value_int();
lcd_preheat_bed_temp[material] = constrain(v, BED_MINTEMP, BED_MAXTEMP - 15);
}
#endif
}
}
#endif // ULTIPANEL
#if ENABLED(TEMPERATURE_UNITS_SUPPORT)
/**
* M149: Set temperature units
*/
inline void gcode_M149() {
2017-06-27 06:31:45 +02:00
if (parser.seenval('C')) parser.set_input_temp_units(TEMPUNIT_C);
else if (parser.seenval('K')) parser.set_input_temp_units(TEMPUNIT_K);
else if (parser.seenval('F')) parser.set_input_temp_units(TEMPUNIT_F);
}
#endif
#if HAS_POWER_SWITCH
/**
* M80 : Turn on the Power Supply
* M80 S : Report the current state and exit
*/
inline void gcode_M80() {
// S: Report the current power supply state and exit
2017-05-20 10:03:08 +02:00
if (parser.seen('S')) {
serialprintPGM(powersupply_on ? PSTR("PS:1\n") : PSTR("PS:0\n"));
return;
}
PSU_ON();
2016-03-27 05:36:36 +02:00
/**
* If you have a switch on suicide pin, this is useful
* if you want to start another print with suicide feature after
* a print without suicide...
*/
2015-04-04 00:31:35 +02:00
#if HAS_SUICIDE
OUT_WRITE(SUICIDE_PIN, HIGH);
#endif
#if DISABLED(AUTO_POWER_CONTROL)
delay(100); // Wait for power to settle
restore_stepper_drivers();
2017-04-15 05:44:08 +02:00
#endif
#if ENABLED(ULTIPANEL)
lcd_reset_status();
2017-12-15 22:02:39 +01:00
#endif
}
2015-03-31 01:50:05 +02:00
#endif // HAS_POWER_SWITCH
/**
* M81: Turn off Power, including Power Supply, if there is one.
*
* This code should ALWAYS be available for EMERGENCY SHUTDOWN!
*/
inline void gcode_M81() {
2016-04-29 03:18:13 +02:00
thermalManager.disable_all_heaters();
2018-05-20 15:19:11 +02:00
planner.finish_and_disable();
2016-03-06 03:27:45 +01:00
#if FAN_COUNT > 0
for (uint8_t i = 0; i < FAN_COUNT; i++) fanSpeeds[i] = 0;
#if ENABLED(PROBING_FANS_OFF)
fans_paused = false;
ZERO(paused_fanSpeeds);
2016-03-06 03:27:45 +01:00
#endif
#endif
safe_delay(1000); // Wait 1 second before switching off
2015-04-04 00:31:35 +02:00
#if HAS_SUICIDE
2015-03-31 01:50:05 +02:00
suicide();
#elif HAS_POWER_SWITCH
PSU_OFF();
2015-03-31 01:50:05 +02:00
#endif
#if ENABLED(ULTIPANEL)
2015-03-31 01:50:05 +02:00
LCD_MESSAGEPGM(MACHINE_NAME " " MSG_OFF ".");
#endif
}
/**
* M82: Set E codes absolute (default)
*/
2018-09-09 04:17:02 +02:00
inline void gcode_M82() { axis_relative_modes[E_CART] = false; }
/**
* M83: Set E codes relative while in Absolute Coordinates (G90) mode
*/
2018-09-09 04:17:02 +02:00
inline void gcode_M83() { axis_relative_modes[E_CART] = true; }
/**
2017-05-13 07:43:12 +02:00
* M18, M84: Disable stepper motors
*/
inline void gcode_M18_M84() {
2017-06-27 06:31:45 +02:00
if (parser.seenval('S')) {
2017-05-20 10:03:08 +02:00
stepper_inactive_time = parser.value_millis_from_seconds();
}
else {
2017-12-31 07:24:57 +01:00
bool all_axis = !(parser.seen('X') || parser.seen('Y') || parser.seen('Z') || parser.seen('E'));
if (all_axis) {
2018-05-20 15:19:11 +02:00
planner.finish_and_disable();
}
else {
planner.synchronize();
2017-05-20 10:03:08 +02:00
if (parser.seen('X')) disable_X();
if (parser.seen('Y')) disable_Y();
if (parser.seen('Z')) disable_Z();
2017-12-27 05:51:55 +01:00
#if E0_ENABLE_PIN != X_ENABLE_PIN && E1_ENABLE_PIN != Y_ENABLE_PIN // Only disable on boards that have separate ENABLE_PINS
2017-05-20 10:03:08 +02:00
if (parser.seen('E')) disable_e_steppers();
#endif
}
2017-12-25 14:44:23 +01:00
#if ENABLED(AUTO_BED_LEVELING_UBL) && ENABLED(ULTIPANEL) // Only needed with an LCD
2018-02-23 16:10:33 +01:00
if (ubl.lcd_map_control) ubl.lcd_map_control = defer_return_to_status = false;
#endif
}
}
/**
* M85: Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
*/
inline void gcode_M85() {
2017-05-20 10:03:08 +02:00
if (parser.seen('S')) max_inactive_time = parser.value_millis_from_seconds();
}
2016-12-04 05:02:27 +01:00
/**
* Multi-stepper support for M92, M201, M203
*/
#if ENABLED(DISTINCT_E_FACTORS)
#define GET_TARGET_EXTRUDER(CMD) if (get_target_extruder_from_command(CMD)) return
#define TARGET_EXTRUDER target_extruder
#else
#define GET_TARGET_EXTRUDER(CMD) NOOP
#define TARGET_EXTRUDER 0
#endif
/**
* M92: Set axis steps-per-unit for one or more axes, X, Y, Z, and E.
2018-09-09 04:17:02 +02:00
* (for Hangprinter: A, B, C, D, and E)
* (Follows the same syntax as G92)
2016-12-04 05:02:27 +01:00
*
* With multiple extruders use T to specify which one.
*/
inline void gcode_M92() {
2016-12-04 05:02:27 +01:00
GET_TARGET_EXTRUDER(92);
2018-09-09 04:17:02 +02:00
LOOP_NUM_AXIS(i) {
if (parser.seen(RAW_AXIS_CODES(i))) {
if (i == E_AXIS) {
2017-05-20 10:03:08 +02:00
const float value = parser.value_per_axis_unit((AxisEnum)(E_AXIS + TARGET_EXTRUDER));
if (value < 20) {
2018-09-09 04:17:02 +02:00
const float factor = planner.axis_steps_per_mm[E_AXIS + TARGET_EXTRUDER] / value; // increase e constants if M92 E14 is given for netfab.
#if DISABLED(JUNCTION_DEVIATION)
planner.max_jerk[E_AXIS] *= factor;
#endif
2016-12-04 05:02:27 +01:00
planner.max_feedrate_mm_s[E_AXIS + TARGET_EXTRUDER] *= factor;
planner.max_acceleration_steps_per_s2[E_AXIS + TARGET_EXTRUDER] *= factor;
}
2016-12-04 05:02:27 +01:00
planner.axis_steps_per_mm[E_AXIS + TARGET_EXTRUDER] = value;
}
else {
2018-09-09 04:17:02 +02:00
#if ENABLED(LINE_BUILDUP_COMPENSATION_FEATURE)
SERIAL_ECHOLNPGM("Warning: "
"M92 A, B, C, and D only affect acceleration planning "
"when BUILDUP_COMPENSATION_FEATURE is enabled.");
#endif
2017-05-20 10:03:08 +02:00
planner.axis_steps_per_mm[i] = parser.value_per_axis_unit((AxisEnum)i);
}
}
}
planner.refresh_positioning();
}
/**
* Output the current position to serial
*/
void report_current_position() {
2018-09-09 04:17:02 +02:00
SERIAL_PROTOCOLPAIR("X:", LOGICAL_X_POSITION(current_position[X_AXIS]));
SERIAL_PROTOCOLPAIR(" Y:", LOGICAL_Y_POSITION(current_position[Y_AXIS]));
SERIAL_PROTOCOLPAIR(" Z:", LOGICAL_Z_POSITION(current_position[Z_AXIS]));
SERIAL_PROTOCOLPAIR(" E:", current_position[E_CART]);
#if ENABLED(HANGPRINTER)
SERIAL_EOL();
SERIAL_PROTOCOLPAIR("A:", line_lengths[A_AXIS]);
SERIAL_PROTOCOLPAIR(" B:", line_lengths[B_AXIS]);
SERIAL_PROTOCOLPAIR(" C:", line_lengths[C_AXIS]);
SERIAL_PROTOCOLLNPAIR(" D:", line_lengths[D_AXIS]);
#endif
stepper.report_positions();
2016-09-12 10:48:29 +02:00
#if IS_SCARA
SERIAL_PROTOCOLPAIR("SCARA Theta:", planner.get_axis_position_degrees(A_AXIS));
SERIAL_PROTOCOLLNPAIR(" Psi+Theta:", planner.get_axis_position_degrees(B_AXIS));
2017-06-09 17:51:23 +02:00
SERIAL_EOL();
#endif
}
#ifdef M114_DETAIL
2017-12-09 12:11:22 +01:00
void report_xyze(const float pos[], const uint8_t n = 4, const uint8_t precision = 3) {
char str[12];
2017-06-06 00:41:38 +02:00
for (uint8_t i = 0; i < n; i++) {
SERIAL_CHAR(' ');
2017-06-06 00:41:38 +02:00
SERIAL_CHAR(axis_codes[i]);
SERIAL_CHAR(':');
2017-06-06 00:41:38 +02:00
SERIAL_PROTOCOL(dtostrf(pos[i], 8, precision, str));
}
2017-06-09 17:51:23 +02:00
SERIAL_EOL();
}
2017-12-09 12:11:22 +01:00
inline void report_xyz(const float pos[]) { report_xyze(pos, 3); }
void report_current_position_detail() {
2017-06-06 00:41:38 +02:00
SERIAL_PROTOCOLPGM("\nLogical:");
2017-11-03 02:17:51 +01:00
const float logical[XYZ] = {
LOGICAL_X_POSITION(current_position[X_AXIS]),
LOGICAL_Y_POSITION(current_position[Y_AXIS]),
LOGICAL_Z_POSITION(current_position[Z_AXIS])
};
2018-01-24 01:48:53 +01:00
report_xyz(logical);
SERIAL_PROTOCOLPGM("Raw: ");
2017-11-03 02:17:51 +01:00
report_xyz(current_position);
float leveled[XYZ] = { current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] };
#if PLANNER_LEVELING
SERIAL_PROTOCOLPGM("Leveled:");
planner.apply_leveling(leveled);
report_xyz(leveled);
SERIAL_PROTOCOLPGM("UnLevel:");
float unleveled[XYZ] = { leveled[X_AXIS], leveled[Y_AXIS], leveled[Z_AXIS] };
planner.unapply_leveling(unleveled);
report_xyz(unleveled);
#endif
#if IS_KINEMATIC
#if IS_SCARA
SERIAL_PROTOCOLPGM("ScaraK: ");
#else
SERIAL_PROTOCOLPGM("DeltaK: ");
#endif
inverse_kinematics(leveled); // writes delta[]
report_xyz(delta);
#endif
planner.synchronize();
2018-05-04 03:55:00 +02:00
SERIAL_PROTOCOLPGM("Stepper:");
2018-09-09 04:17:02 +02:00
LOOP_NUM_AXIS(i) {
2017-12-11 02:09:27 +01:00
SERIAL_CHAR(' ');
2018-09-09 04:17:02 +02:00
SERIAL_CHAR(RAW_AXIS_CODES(i));
2017-12-11 02:09:27 +01:00
SERIAL_CHAR(':');
SERIAL_PROTOCOL(stepper.position((AxisEnum)i));
}
SERIAL_EOL();
#if IS_SCARA
const float deg[XYZ] = {
planner.get_axis_position_degrees(A_AXIS),
planner.get_axis_position_degrees(B_AXIS)
};
SERIAL_PROTOCOLPGM("Degrees:");
2017-06-06 00:41:38 +02:00
report_xyze(deg, 2);
#endif
SERIAL_PROTOCOLPGM("FromStp:");
get_cartesian_from_steppers(); // writes cartes[XYZ] (with forward kinematics)
const float from_steppers[XYZE] = { cartes[X_AXIS], cartes[Y_AXIS], cartes[Z_AXIS], planner.get_axis_position_mm(E_AXIS) };
report_xyze(from_steppers);
const float diff[XYZE] = {
from_steppers[X_AXIS] - leveled[X_AXIS],
from_steppers[Y_AXIS] - leveled[Y_AXIS],
from_steppers[Z_AXIS] - leveled[Z_AXIS],
2018-09-09 04:17:02 +02:00
from_steppers[E_CART] - current_position[E_CART]
};
SERIAL_PROTOCOLPGM("Differ: ");
report_xyze(diff);
}
#endif // M114_DETAIL
/**
2017-06-06 00:41:38 +02:00
* M114: Report current position to host
*/
inline void gcode_M114() {
#ifdef M114_DETAIL
2018-09-09 04:17:02 +02:00
if (parser.seen('D')) return report_current_position_detail();
#endif
planner.synchronize();
2018-09-09 04:17:02 +02:00
const uint16_t sval = parser.ushortval('S');
#if ENABLED(MECHADUINO_I2C_COMMANDS)
if (sval == 1) return report_axis_position_from_encoder_data();
#endif
if (sval == 2) return report_xyz_from_stepper_position();
report_current_position();
2017-06-06 00:41:38 +02:00
}
/**
* M115: Capabilities string
*/
2017-12-20 03:33:57 +01:00
#if ENABLED(EXTENDED_CAPABILITIES_REPORT)
static void cap_line(const char * const name, bool ena=false) {
SERIAL_PROTOCOLPGM("Cap:");
serialprintPGM(name);
2017-12-29 04:13:50 +01:00
SERIAL_PROTOCOLPGM(":");
2017-12-20 03:33:57 +01:00
SERIAL_PROTOCOLLN(int(ena ? 1 : 0));
}
#endif
inline void gcode_M115() {
2016-11-09 01:05:59 +01:00
SERIAL_PROTOCOLLNPGM(MSG_M115_REPORT);
#if ENABLED(EXTENDED_CAPABILITIES_REPORT)
// SERIAL_XON_XOFF
2017-12-20 03:33:57 +01:00
cap_line(PSTR("SERIAL_XON_XOFF")
#if ENABLED(SERIAL_XON_XOFF)
, true
#endif
);
2016-11-09 01:05:59 +01:00
// EEPROM (M500, M501)
2017-12-20 03:33:57 +01:00
cap_line(PSTR("EEPROM")
#if ENABLED(EEPROM_SETTINGS)
, true
#endif
);
// Volumetric Extrusion (M200)
cap_line(PSTR("VOLUMETRIC")
#if DISABLED(NO_VOLUMETRICS)
, true
#endif
);
2016-11-09 01:05:59 +01:00
// AUTOREPORT_TEMP (M155)
2017-12-20 03:33:57 +01:00
cap_line(PSTR("AUTOREPORT_TEMP")
#if ENABLED(AUTO_REPORT_TEMPERATURES)
, true
#endif
);
2016-11-09 01:05:59 +01:00
// PROGRESS (M530 S L, M531 <file>, M532 X L)
2017-12-20 03:33:57 +01:00
cap_line(PSTR("PROGRESS"));
2016-11-09 01:05:59 +01:00
// Print Job timer M75, M76, M77
2017-12-20 03:33:57 +01:00
cap_line(PSTR("PRINT_JOB"), true);
2016-11-09 01:05:59 +01:00
// AUTOLEVEL (G29)
2017-12-20 03:33:57 +01:00
cap_line(PSTR("AUTOLEVEL")
#if HAS_AUTOLEVEL
, true
#endif
);
2016-11-09 01:05:59 +01:00
// Z_PROBE (G30)
2017-12-20 03:33:57 +01:00
cap_line(PSTR("Z_PROBE")
#if HAS_BED_PROBE
, true
#endif
);
2016-11-09 01:05:59 +01:00
2017-04-06 01:14:02 +02:00
// MESH_REPORT (M420 V)
2017-12-20 03:33:57 +01:00
cap_line(PSTR("LEVELING_DATA")
#if HAS_LEVELING
, true
#endif
);
2017-04-06 01:14:02 +02:00
2017-10-15 10:01:25 +02:00
// BUILD_PERCENT (M73)
2017-12-20 03:33:57 +01:00
cap_line(PSTR("BUILD_PERCENT")
#if ENABLED(LCD_SET_PROGRESS_MANUALLY)
, true
#endif
);
2017-10-15 10:01:25 +02:00
2017-06-28 20:08:33 +02:00
// SOFTWARE_POWER (M80, M81)
2017-12-20 03:33:57 +01:00
cap_line(PSTR("SOFTWARE_POWER")
#if HAS_POWER_SWITCH
, true
#endif
);
2016-11-09 01:05:59 +01:00
// CASE LIGHTS (M355)
2017-12-20 03:33:57 +01:00
cap_line(PSTR("TOGGLE_LIGHTS")
#if HAS_CASE_LIGHT
, true
#endif
);
cap_line(PSTR("CASE_LIGHT_BRIGHTNESS")
#if HAS_CASE_LIGHT
, USEABLE_HARDWARE_PWM(CASE_LIGHT_PIN)
#endif
);
2016-11-09 01:05:59 +01:00
// EMERGENCY_PARSER (M108, M112, M410)
2017-12-20 03:33:57 +01:00
cap_line(PSTR("EMERGENCY_PARSER")
#if ENABLED(EMERGENCY_PARSER)
, true
#endif
);
2016-11-09 01:05:59 +01:00
// AUTOREPORT_SD_STATUS (M27 extension)
cap_line(PSTR("AUTOREPORT_SD_STATUS")
#if ENABLED(AUTO_REPORT_SD_STATUS)
, true
#endif
);
// THERMAL_PROTECTION
cap_line(PSTR("THERMAL_PROTECTION")
#if ENABLED(THERMAL_PROTECTION_HOTENDS) && ENABLED(THERMAL_PROTECTION_BED)
, true
#endif
);
2016-11-09 01:05:59 +01:00
#endif // EXTENDED_CAPABILITIES_REPORT
}
2015-05-17 14:00:09 +02:00
/**
* M117: Set LCD Status Message
*/
inline void gcode_M117() {
if (parser.string_arg[0])
lcd_setstatus(parser.string_arg);
else
lcd_reset_status();
}
/**
* M118: Display a message in the host console.
*
2018-05-24 15:19:07 +02:00
* A1 Prepend '// ' for an action command, as in OctoPrint
* E1 Have the host 'echo:' the text
*/
inline void gcode_M118() {
2018-04-13 02:00:16 +02:00
bool hasE = false, hasA = false;
char *p = parser.string_arg;
for (uint8_t i = 2; i--;)
if ((p[0] == 'A' || p[0] == 'E') && p[1] == '1') {
if (p[0] == 'A') hasA = true;
if (p[0] == 'E') hasE = true;
p += 2;
while (*p == ' ') ++p;
}
if (hasE) SERIAL_ECHO_START();
if (hasA) SERIAL_ECHOPGM("// ");
SERIAL_ECHOLN(p);
}
/**
* M119: Output endstop states to serial output
*/
2016-04-27 23:46:24 +02:00
inline void gcode_M119() { endstops.M119(); }
/**
* M120: Enable endstops and set non-homing endstop state to "enabled"
*/
inline void gcode_M120() { endstops.enable_globally(true); }
/**
* M121: Disable endstops and set non-homing endstop state to "disabled"
*/
inline void gcode_M121() { endstops.enable_globally(false); }
2017-03-19 10:26:22 +01:00
#if ENABLED(PARK_HEAD_ON_PAUSE)
/**
* M125: Store current position and move to filament change position.
* Called on pause (by M25) to prevent material leaking onto the
* object. On resume (M24) the head will be moved back and the
* print will resume.
*
* If Marlin is compiled without SD Card support, M125 can be
* used directly to pause the print and move to park position,
* resuming with a button click or M108.
*
* L = override retract length
* X = override X
* Y = override Y
* Z = override Z raise
*/
inline void gcode_M125() {
// Initial retract before move to filament change position
const float retract = -ABS(parser.seen('L') ? parser.value_axis_units(E_AXIS) : 0
#ifdef PAUSE_PARK_RETRACT_LENGTH
+ (PAUSE_PARK_RETRACT_LENGTH)
2017-03-19 10:26:22 +01:00
#endif
);
2017-03-19 10:26:22 +01:00
2017-12-25 08:33:36 +01:00
point_t park_point = NOZZLE_PARK_POINT;
2017-03-19 10:26:22 +01:00
// Move XY axes to filament change position or given position
2017-12-25 08:33:36 +01:00
if (parser.seenval('X')) park_point.x = parser.linearval('X');
if (parser.seenval('Y')) park_point.y = parser.linearval('Y');
2017-12-25 08:33:36 +01:00
// Lift Z axis
if (parser.seenval('Z')) park_point.z = parser.linearval('Z');
#if HOTENDS > 1 && DISABLED(DUAL_X_CARRIAGE) && DISABLED(DELTA)
park_point.x += (active_extruder ? hotend_offset[X_AXIS][active_extruder] : 0);
park_point.y += (active_extruder ? hotend_offset[Y_AXIS][active_extruder] : 0);
#endif
2017-03-19 10:26:22 +01:00
#if DISABLED(SDSUPPORT)
const bool job_running = print_job_timer.isRunning();
#endif
2017-03-19 10:26:22 +01:00
if (pause_print(retract, park_point)) {
#if DISABLED(SDSUPPORT)
// Wait for lcd click or M108
wait_for_filament_reload();
2017-03-19 10:26:22 +01:00
// Return to print position and continue
resume_print();
if (job_running) print_job_timer.start();
#endif
}
2017-03-19 10:26:22 +01:00
}
#endif // PARK_HEAD_ON_PAUSE
#if HAS_COLOR_LEDS
/**
2017-04-11 19:58:55 +02:00
* M150: Set Status LED Color - Use R-U-B-W for R-G-B-W
* and Brightness - Use P (for NEOPIXEL only)
2016-11-30 02:51:13 +01:00
*
2017-04-11 19:58:55 +02:00
* Always sets all 3 or 4 components. If a component is left out, set to 0.
* If brightness is left out, no value changed
2016-11-30 02:51:13 +01:00
*
* Examples:
*
* M150 R255 ; Turn LED red
* M150 R255 U127 ; Turn LED orange (PWM only)
* M150 ; Turn LED off
* M150 R U B ; Turn LED white
2017-04-11 19:58:55 +02:00
* M150 W ; Turn LED white using a white LED
* M150 P127 ; Set LED 50% brightness
* M150 P ; Set LED full brightness
*/
inline void gcode_M150() {
2017-11-28 06:02:44 +01:00
leds.set_color(MakeLEDColor(
2017-05-20 10:03:08 +02:00
parser.seen('R') ? (parser.has_value() ? parser.value_byte() : 255) : 0,
parser.seen('U') ? (parser.has_value() ? parser.value_byte() : 255) : 0,
2017-11-28 06:02:44 +01:00
parser.seen('B') ? (parser.has_value() ? parser.value_byte() : 255) : 0,
parser.seen('W') ? (parser.has_value() ? parser.value_byte() : 255) : 0,
parser.seen('P') ? (parser.has_value() ? parser.value_byte() : 255) : pixels.getBrightness()
));
}
#endif // HAS_COLOR_LEDS
#if DISABLED(NO_VOLUMETRICS)
/**
* M200: Set filament diameter and set E axis units to cubic units
*
* T<extruder> - Optional extruder number. Current extruder if omitted.
* D<linear> - Diameter of the filament. Use "D0" to switch back to linear units on the E axis.
*/
inline void gcode_M200() {
if (get_target_extruder_from_command(200)) return;
if (parser.seen('D')) {
// setting any extruder filament size disables volumetric on the assumption that
// slicers either generate in extruder values as cubic mm or as as filament feeds
// for all extruders
if ( (parser.volumetric_enabled = (parser.value_linear_units() != 0)) )
planner.set_filament_size(target_extruder, parser.value_linear_units());
}
planner.calculate_volumetric_multipliers();
}
#endif // !NO_VOLUMETRICS
/**
* M201: Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
2016-12-04 05:02:27 +01:00
*
* With multiple extruders use T to specify which one.
*/
inline void gcode_M201() {
2016-12-04 05:02:27 +01:00
GET_TARGET_EXTRUDER(201);
2018-09-09 04:17:02 +02:00
LOOP_NUM_AXIS(i) {
if (parser.seen(RAW_AXIS_CODES(i))) {
2016-12-04 05:02:27 +01:00
const uint8_t a = i + (i == E_AXIS ? TARGET_EXTRUDER : 0);
2017-05-20 10:03:08 +02:00
planner.max_acceleration_mm_per_s2[a] = parser.value_axis_units((AxisEnum)a);
}
}
// steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
2016-04-28 03:06:32 +02:00
planner.reset_acceleration_rates();
}
#if 0 // Not used for Sprinter/grbl gen6
inline void gcode_M202() {
2016-07-23 22:07:23 +02:00
LOOP_XYZE(i) {
2017-05-20 10:03:08 +02:00
if (parser.seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = parser.value_axis_units((AxisEnum)i) * planner.axis_steps_per_mm[i];
}
}
#endif
/**
* M203: Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in units/sec
2016-12-04 05:02:27 +01:00
*
* With multiple extruders use T to specify which one.
*/
inline void gcode_M203() {
2016-12-04 05:02:27 +01:00
GET_TARGET_EXTRUDER(203);
2018-09-09 04:17:02 +02:00
LOOP_NUM_AXIS(i)
if (parser.seen(RAW_AXIS_CODES(i))) {
2016-12-04 05:02:27 +01:00
const uint8_t a = i + (i == E_AXIS ? TARGET_EXTRUDER : 0);
2017-05-20 10:03:08 +02:00
planner.max_feedrate_mm_s[a] = parser.value_axis_units((AxisEnum)a);
2016-12-04 05:02:27 +01:00
}
}
/**
* M204: Set Accelerations in units/sec^2 (M204 P1200 R3000 T3000)
*
* P = Printing moves
* R = Retract only (no X, Y, Z) moves
* T = Travel (non printing) moves
*/
inline void gcode_M204() {
bool report = true;
if (parser.seenval('S')) { // Kept for legacy compatibility. Should NOT BE USED for new developments.
2017-05-20 10:03:08 +02:00
planner.travel_acceleration = planner.acceleration = parser.value_linear_units();
report = false;
}
if (parser.seenval('P')) {
2017-05-20 10:03:08 +02:00
planner.acceleration = parser.value_linear_units();
report = false;
}
if (parser.seenval('R')) {
2017-05-20 10:03:08 +02:00
planner.retract_acceleration = parser.value_linear_units();
report = false;
}
if (parser.seenval('T')) {
2017-05-20 10:03:08 +02:00
planner.travel_acceleration = parser.value_linear_units();
report = false;
}
if (report) {
SERIAL_ECHOPAIR("Acceleration: P", planner.acceleration);
SERIAL_ECHOPAIR(" R", planner.retract_acceleration);
SERIAL_ECHOLNPAIR(" T", planner.travel_acceleration);
}
}
/**
* M205: Set Advanced Settings
*
2018-09-09 04:17:02 +02:00
* Q = Min Segment Time (µs)
* S = Min Feed Rate (units/s)
* T = Min Travel Feed Rate (units/s)
2016-10-03 08:54:15 +02:00
* X = Max X Jerk (units/sec^2)
* Y = Max Y Jerk (units/sec^2)
* Z = Max Z Jerk (units/sec^2)
* E = Max E Jerk (units/sec^2)
* J = Junction Deviation (mm) (Requires JUNCTION_DEVIATION)
*/
inline void gcode_M205() {
2018-09-09 04:17:02 +02:00
if (parser.seen('Q')) planner.min_segment_time_us = parser.value_ulong();
2017-05-20 10:03:08 +02:00
if (parser.seen('S')) planner.min_feedrate_mm_s = parser.value_linear_units();
if (parser.seen('T')) planner.min_travel_feedrate_mm_s = parser.value_linear_units();
#if ENABLED(JUNCTION_DEVIATION)
2018-06-11 01:17:41 +02:00
if (parser.seen('J')) {
const float junc_dev = parser.value_linear_units();
if (WITHIN(junc_dev, 0.01f, 0.3f)) {
2018-06-11 01:17:41 +02:00
planner.junction_deviation_mm = junc_dev;
planner.recalculate_max_e_jerk();
}
2018-06-11 01:17:41 +02:00
else {
SERIAL_ERROR_START();
SERIAL_ERRORLNPGM("?J out of range (0.01 to 0.3)");
}
}
#else
2018-09-09 04:17:02 +02:00
#if ENABLED(HANGPRINTER)
if (parser.seen('A')) planner.max_jerk[A_AXIS] = parser.value_linear_units();
if (parser.seen('B')) planner.max_jerk[B_AXIS] = parser.value_linear_units();
if (parser.seen('C')) planner.max_jerk[C_AXIS] = parser.value_linear_units();
if (parser.seen('D')) planner.max_jerk[D_AXIS] = parser.value_linear_units();
#else
if (parser.seen('X')) planner.max_jerk[X_AXIS] = parser.value_linear_units();
if (parser.seen('Y')) planner.max_jerk[Y_AXIS] = parser.value_linear_units();
if (parser.seen('Z')) {
planner.max_jerk[Z_AXIS] = parser.value_linear_units();
#if HAS_MESH
if (planner.max_jerk[Z_AXIS] <= 0.1f)
SERIAL_ECHOLNPGM("WARNING! Low Z Jerk may lead to unwanted pauses.");
#endif
}
#endif
if (parser.seen('E')) planner.max_jerk[E_AXIS] = parser.value_linear_units();
#endif
}
#if HAS_M206_COMMAND
2017-03-05 01:01:33 +01:00
/**
* M206: Set Additional Homing Offset (X Y Z). SCARA aliases T=X, P=Y
2017-05-25 00:19:02 +02:00
*
* *** @thinkyhead: I recommend deprecating M206 for SCARA in favor of M665.
* *** M206 for SCARA will remain enabled in 1.1.x for compatibility.
* *** In the next 1.2 release, it will simply be disabled by default.
2017-03-05 01:01:33 +01:00
*/
inline void gcode_M206() {
LOOP_XYZ(i)
2017-05-20 10:03:08 +02:00
if (parser.seen(axis_codes[i]))
set_home_offset((AxisEnum)i, parser.value_linear_units());
2017-03-05 01:01:33 +01:00
#if ENABLED(MORGAN_SCARA)
2017-11-16 07:23:21 +01:00
if (parser.seen('T')) set_home_offset(A_AXIS, parser.value_float()); // Theta
if (parser.seen('P')) set_home_offset(B_AXIS, parser.value_float()); // Psi
2017-03-05 01:01:33 +01:00
#endif
report_current_position();
}
#endif // HAS_M206_COMMAND
#if ENABLED(DELTA)
/**
* M665: Set delta configurations
*
* H = delta height
* L = diagonal rod
* R = delta radius
* S = segments per second
* B = delta calibration radius
* X = Alpha (Tower 1) angle trim
* Y = Beta (Tower 2) angle trim
* Z = Gamma (Tower 3) angle trim
*/
inline void gcode_M665() {
2017-11-24 14:42:40 +01:00
if (parser.seen('H')) delta_height = parser.value_linear_units();
2017-06-27 09:36:19 +02:00
if (parser.seen('L')) delta_diagonal_rod = parser.value_linear_units();
if (parser.seen('R')) delta_radius = parser.value_linear_units();
if (parser.seen('S')) delta_segments_per_second = parser.value_float();
if (parser.seen('B')) delta_calibration_radius = parser.value_float();
2017-05-20 10:03:08 +02:00
if (parser.seen('X')) delta_tower_angle_trim[A_AXIS] = parser.value_float();
if (parser.seen('Y')) delta_tower_angle_trim[B_AXIS] = parser.value_float();
if (parser.seen('Z')) delta_tower_angle_trim[C_AXIS] = parser.value_float();
2017-11-08 09:43:29 +01:00
recalc_delta_settings();
}
/**
* M666: Set delta endstop adjustment
*/
inline void gcode_M666() {
2015-08-05 13:40:36 +02:00
#if ENABLED(DEBUG_LEVELING_FEATURE)
2016-03-30 04:50:01 +02:00
if (DEBUGGING(LEVELING)) {
2015-08-05 13:40:36 +02:00
SERIAL_ECHOLNPGM(">>> gcode_M666");
}
2015-07-10 01:57:44 +02:00
#endif
2016-07-23 22:07:23 +02:00
LOOP_XYZ(i) {
2017-05-20 10:03:08 +02:00
if (parser.seen(axis_codes[i])) {
2017-10-02 01:24:53 +02:00
if (parser.value_linear_units() * Z_HOME_DIR <= 0)
delta_endstop_adj[i] = parser.value_linear_units();
2015-08-05 13:40:36 +02:00
#if ENABLED(DEBUG_LEVELING_FEATURE)
2016-03-30 04:50:01 +02:00
if (DEBUGGING(LEVELING)) {
SERIAL_ECHOPAIR("delta_endstop_adj[", axis_codes[i]);
SERIAL_ECHOLNPAIR("] = ", delta_endstop_adj[i]);
2015-08-05 13:40:36 +02:00
}
2015-07-10 01:57:44 +02:00
#endif
}
}
2015-08-05 13:40:36 +02:00
#if ENABLED(DEBUG_LEVELING_FEATURE)
2016-03-30 04:50:01 +02:00
if (DEBUGGING(LEVELING)) {
2015-08-05 13:40:36 +02:00
SERIAL_ECHOLNPGM("<<< gcode_M666");
}
2015-07-10 01:57:44 +02:00
#endif
}
2017-05-25 00:19:02 +02:00
#elif IS_SCARA
/**
* M665: Set SCARA settings
*
* Parameters:
*
* S[segments-per-second] - Segments-per-second
* P[theta-psi-offset] - Theta-Psi offset, added to the shoulder (A/X) angle
* T[theta-offset] - Theta offset, added to the elbow (B/Y) angle
*
* A, P, and X are all aliases for the shoulder angle
* B, T, and Y are all aliases for the elbow angle
*/
inline void gcode_M665() {
if (parser.seen('S')) delta_segments_per_second = parser.value_float();
const bool hasA = parser.seen('A'), hasP = parser.seen('P'), hasX = parser.seen('X');
const uint8_t sumAPX = hasA + hasP + hasX;
if (sumAPX == 1)
home_offset[A_AXIS] = parser.value_float();
else if (sumAPX > 1) {
2017-06-09 17:51:23 +02:00
SERIAL_ERROR_START();
2017-05-25 00:19:02 +02:00
SERIAL_ERRORLNPGM("Only one of A, P, or X is allowed.");
return;
}
const bool hasB = parser.seen('B'), hasT = parser.seen('T'), hasY = parser.seen('Y');
const uint8_t sumBTY = hasB + hasT + hasY;
if (sumBTY == 1)
home_offset[B_AXIS] = parser.value_float();
else if (sumBTY > 1) {
2017-06-09 17:51:23 +02:00
SERIAL_ERROR_START();
2017-05-25 00:19:02 +02:00
SERIAL_ERRORLNPGM("Only one of B, T, or Y is allowed.");
return;
}
}
2018-09-09 04:17:02 +02:00
#elif ENABLED(HANGPRINTER)
/**
* M665: Set HANGPRINTER settings
*
* Parameters:
*
* W[anchor_A_y] - A-anchor's y coordinate (see note)
* E[anchor_A_z] - A-anchor's z coordinate (see note)
* R[anchor_B_x] - B-anchor's x coordinate (see note)
* T[anchor_B_y] - B-anchor's y coordinate (see note)
* Y[anchor_B_z] - B-anchor's z coordinate (see note)
* U[anchor_C_x] - C-anchor's x coordinate (see note)
* I[anchor_C_y] - C-anchor's y coordinate (see note)
* O[anchor_C_z] - C-anchor's z coordinate (see note)
* P[anchor_D_z] - D-anchor's z coordinate (see note)
* S[segments-per-second] - Segments-per-second
*
* Note: All xyz coordinates are measured relative to the line's pivot point in the mover,
* when it is at its home position (nozzle in (0,0,0), and lines tight).
* The y-axis is defined to be horizontal right above/below the A-lines when mover is at home.
* The z-axis is along the vertical direction.
*/
inline void gcode_M665() {
if (parser.seen('W')) anchor_A_y = parser.value_float();
if (parser.seen('E')) anchor_A_z = parser.value_float();
if (parser.seen('R')) anchor_B_x = parser.value_float();
if (parser.seen('T')) anchor_B_y = parser.value_float();
if (parser.seen('Y')) anchor_B_z = parser.value_float();
if (parser.seen('U')) anchor_C_x = parser.value_float();
if (parser.seen('I')) anchor_C_y = parser.value_float();
if (parser.seen('O')) anchor_C_z = parser.value_float();
if (parser.seen('P')) anchor_D_z = parser.value_float();
if (parser.seen('S')) delta_segments_per_second = parser.value_float();
recalc_hangprinter_settings();
}
#elif ENABLED(X_DUAL_ENDSTOPS) || ENABLED(Y_DUAL_ENDSTOPS) || ENABLED(Z_DUAL_ENDSTOPS)
/**
* M666: Set Dual Endstops offsets for X, Y, and/or Z.
* With no parameters report current offsets.
*/
inline void gcode_M666() {
bool report = true;
#if ENABLED(X_DUAL_ENDSTOPS)
if (parser.seenval('X')) {
endstops.x_endstop_adj = parser.value_linear_units();
report = false;
}
#endif
#if ENABLED(Y_DUAL_ENDSTOPS)
if (parser.seenval('Y')) {
endstops.y_endstop_adj = parser.value_linear_units();
report = false;
}
#endif
#if ENABLED(Z_DUAL_ENDSTOPS)
if (parser.seenval('Z')) {
endstops.z_endstop_adj = parser.value_linear_units();
report = false;
}
#endif
if (report) {
SERIAL_ECHOPGM("Dual Endstop Adjustment (mm): ");
#if ENABLED(X_DUAL_ENDSTOPS)
SERIAL_ECHOPAIR(" X", endstops.x_endstop_adj);
#endif
#if ENABLED(Y_DUAL_ENDSTOPS)
SERIAL_ECHOPAIR(" Y", endstops.y_endstop_adj);
#endif
#if ENABLED(Z_DUAL_ENDSTOPS)
SERIAL_ECHOPAIR(" Z", endstops.z_endstop_adj);
#endif
SERIAL_EOL();
}
}
2015-08-05 13:40:36 +02:00
#endif // X_DUAL_ENDSTOPS || Y_DUAL_ENDSTOPS || Z_DUAL_ENDSTOPS
#if ENABLED(FWRETRACT)
/**
* M207: Set firmware retraction values
*
* S[+units] retract_length
2017-07-27 05:11:22 +02:00
* W[+units] swap_retract_length (multi-extruder)
* F[units/min] retract_feedrate_mm_s
* Z[units] retract_zlift
*/
inline void gcode_M207() {
2018-01-04 23:42:56 +01:00
if (parser.seen('S')) fwretract.retract_length = parser.value_axis_units(E_AXIS);
if (parser.seen('F')) fwretract.retract_feedrate_mm_s = MMM_TO_MMS(parser.value_axis_units(E_AXIS));
if (parser.seen('Z')) fwretract.retract_zlift = parser.value_linear_units();
if (parser.seen('W')) fwretract.swap_retract_length = parser.value_axis_units(E_AXIS);
}
/**
* M208: Set firmware un-retraction values
*
* S[+units] retract_recover_length (in addition to M207 S*)
2017-07-27 05:11:22 +02:00
* W[+units] swap_retract_recover_length (multi-extruder)
2016-07-16 03:49:34 +02:00
* F[units/min] retract_recover_feedrate_mm_s
* R[units/min] swap_retract_recover_feedrate_mm_s
*/
inline void gcode_M208() {
2018-01-04 23:42:56 +01:00
if (parser.seen('S')) fwretract.retract_recover_length = parser.value_axis_units(E_AXIS);
if (parser.seen('F')) fwretract.retract_recover_feedrate_mm_s = MMM_TO_MMS(parser.value_axis_units(E_AXIS));
if (parser.seen('R')) fwretract.swap_retract_recover_feedrate_mm_s = MMM_TO_MMS(parser.value_axis_units(E_AXIS));
if (parser.seen('W')) fwretract.swap_retract_recover_length = parser.value_axis_units(E_AXIS);
}
/**
* M209: Enable automatic retract (M209 S1)
2016-10-05 11:39:01 +02:00
* For slicers that don't support G10/11, reversed extrude-only
* moves will be classified as retraction.
*/
inline void gcode_M209() {
if (MIN_AUTORETRACT <= MAX_AUTORETRACT) {
if (parser.seen('S')) {
2018-01-04 23:42:56 +01:00
fwretract.autoretract_enabled = parser.value_bool();
for (uint8_t i = 0; i < EXTRUDERS; i++) fwretract.retracted[i] = false;
}
}
}
#endif // FWRETRACT
/**
* M211: Enable, Disable, and/or Report software endstops
*
* Usage: M211 S1 to enable, M211 S0 to disable, M211 alone for report
*/
inline void gcode_M211() {
2017-06-09 17:51:23 +02:00
SERIAL_ECHO_START();
2017-03-16 23:20:24 +01:00
#if HAS_SOFTWARE_ENDSTOPS
2017-05-20 10:03:08 +02:00
if (parser.seen('S')) soft_endstops_enabled = parser.value_bool();
2016-09-13 00:49:35 +02:00
SERIAL_ECHOPGM(MSG_SOFT_ENDSTOPS);
serialprintPGM(soft_endstops_enabled ? PSTR(MSG_ON) : PSTR(MSG_OFF));
#else
2016-09-13 00:49:35 +02:00
SERIAL_ECHOPGM(MSG_SOFT_ENDSTOPS);
SERIAL_ECHOPGM(MSG_OFF);
#endif
2016-09-13 00:49:35 +02:00
SERIAL_ECHOPGM(MSG_SOFT_MIN);
2017-11-26 03:47:36 +01:00
SERIAL_ECHOPAIR( MSG_X, LOGICAL_X_POSITION(soft_endstop_min[X_AXIS]));
SERIAL_ECHOPAIR(" " MSG_Y, LOGICAL_Y_POSITION(soft_endstop_min[Y_AXIS]));
SERIAL_ECHOPAIR(" " MSG_Z, LOGICAL_Z_POSITION(soft_endstop_min[Z_AXIS]));
2016-09-13 00:49:35 +02:00
SERIAL_ECHOPGM(MSG_SOFT_MAX);
2017-11-26 03:47:36 +01:00
SERIAL_ECHOPAIR( MSG_X, LOGICAL_X_POSITION(soft_endstop_max[X_AXIS]));
SERIAL_ECHOPAIR(" " MSG_Y, LOGICAL_Y_POSITION(soft_endstop_max[Y_AXIS]));
SERIAL_ECHOLNPAIR(" " MSG_Z, LOGICAL_Z_POSITION(soft_endstop_max[Z_AXIS]));
}
2016-05-27 02:43:20 +02:00
#if HOTENDS > 1
/**
2018-03-12 04:21:17 +01:00
* M218 - Set/get hotend offset (in linear units)
*
* T<tool>
* X<xoffset>
* Y<yoffset>
2018-05-19 23:32:24 +02:00
* Z<zoffset> - Available with DUAL_X_CARRIAGE, SWITCHING_NOZZLE, and PARKING_EXTRUDER
*/
inline void gcode_M218() {
if (get_target_extruder_from_command(218) || target_extruder == 0) return;
2018-03-12 04:21:17 +01:00
bool report = true;
if (parser.seenval('X')) {
hotend_offset[X_AXIS][target_extruder] = parser.value_linear_units();
report = false;
}
if (parser.seenval('Y')) {
hotend_offset[Y_AXIS][target_extruder] = parser.value_linear_units();
report = false;
}
2018-05-19 23:32:24 +02:00
#if HAS_HOTEND_OFFSET_Z
2018-03-12 04:21:17 +01:00
if (parser.seenval('Z')) {
hotend_offset[Z_AXIS][target_extruder] = parser.value_linear_units();
report = false;
}
#endif
2018-03-12 04:21:17 +01:00
if (report) {
SERIAL_ECHO_START();
SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
HOTEND_LOOP() {
SERIAL_CHAR(' ');
SERIAL_ECHO(hotend_offset[X_AXIS][e]);
2015-04-04 06:43:30 +02:00
SERIAL_CHAR(',');
2018-03-12 04:21:17 +01:00
SERIAL_ECHO(hotend_offset[Y_AXIS][e]);
2018-05-19 23:32:24 +02:00
#if HAS_HOTEND_OFFSET_Z
2018-03-12 04:21:17 +01:00
SERIAL_CHAR(',');
SERIAL_ECHO(hotend_offset[Z_AXIS][e]);
#endif
}
SERIAL_EOL();
}
#if ENABLED(DELTA)
if (target_extruder == active_extruder)
do_blocking_move_to_xy(current_position[X_AXIS], current_position[Y_AXIS], planner.max_feedrate_mm_s[X_AXIS]);
#endif
}
2016-05-27 02:43:20 +02:00
#endif // HOTENDS > 1
/**
* M220: Set speed percentage factor, aka "Feed Rate" (M220 S95)
*/
inline void gcode_M220() {
2017-06-27 06:31:45 +02:00
if (parser.seenval('S')) feedrate_percentage = parser.value_int();
}
/**
* M221: Set extrusion percentage (M221 T0 S95)
*/
inline void gcode_M221() {
if (get_target_extruder_from_command(221)) return;
2017-11-10 09:38:53 +01:00
if (parser.seenval('S')) {
planner.flow_percentage[target_extruder] = parser.value_int();
planner.refresh_e_factor(target_extruder);
}
2018-04-16 08:42:03 +02:00
else {
SERIAL_ECHO_START();
SERIAL_CHAR('E');
SERIAL_CHAR('0' + target_extruder);
SERIAL_ECHOPAIR(" Flow: ", planner.flow_percentage[target_extruder]);
SERIAL_CHAR('%');
SERIAL_EOL();
}
}
/**
* M226: Wait until the specified pin reaches the state required (M226 P<pin> S<state>)
*/
inline void gcode_M226() {
2017-05-20 10:03:08 +02:00
if (parser.seen('P')) {
2018-06-11 00:39:48 +02:00
const int pin = parser.value_int(), pin_state = parser.intval('S', -1);
if (WITHIN(pin_state, -1, 1) && pin > -1) {
if (pin_is_protected(pin))
protected_pin_err();
else {
int target = LOW;
planner.synchronize();
pinMode(pin, INPUT);
switch (pin_state) {
case 1: target = HIGH; break;
case 0: target = LOW; break;
case -1: target = !digitalRead(pin); break;
}
while (digitalRead(pin) != target) idle();
2016-10-05 08:50:36 +02:00
}
2018-02-09 03:42:12 +01:00
} // pin_state -1 0 1 && pin > -1
2017-05-20 10:03:08 +02:00
} // parser.seen('P')
}
2016-11-08 23:28:42 +01:00
#if ENABLED(EXPERIMENTAL_I2CBUS)
/**
* M260: Send data to a I2C slave device
*
* This is a PoC, the formating and arguments for the GCODE will
* change to be more compatible, the current proposal is:
*
* M260 A<slave device address base 10> ; Sets the I2C slave address the data will be sent to
*
* M260 B<byte-1 value in base 10>
* M260 B<byte-2 value in base 10>
* M260 B<byte-3 value in base 10>
*
* M260 S1 ; Send the buffered data and reset the buffer
* M260 R1 ; Reset the buffer without sending data
*
*/
inline void gcode_M260() {
// Set the target address
2017-05-20 10:03:08 +02:00
if (parser.seen('A')) i2c.address(parser.value_byte());
2016-11-08 23:28:42 +01:00
// Add a new byte to the buffer
2017-05-20 10:03:08 +02:00
if (parser.seen('B')) i2c.addbyte(parser.value_byte());
2016-11-08 23:28:42 +01:00
// Flush the buffer to the bus
2017-05-20 10:03:08 +02:00
if (parser.seen('S')) i2c.send();
2016-11-08 23:28:42 +01:00
// Reset and rewind the buffer
2017-05-20 10:03:08 +02:00
else if (parser.seen('R')) i2c.reset();
2016-11-08 23:28:42 +01:00
}
/**
* M261: Request X bytes from I2C slave device
*
* Usage: M261 A<slave device address base 10> B<number of bytes>
*/
inline void gcode_M261() {
2017-05-20 10:03:08 +02:00
if (parser.seen('A')) i2c.address(parser.value_byte());
2016-11-08 23:28:42 +01:00
uint8_t bytes = parser.byteval('B', 1);
2016-11-08 23:28:42 +01:00
if (i2c.addr && bytes && bytes <= TWIBUS_BUFFER_SIZE) {
i2c.relay(bytes);
}
else {
2017-06-09 17:51:23 +02:00
SERIAL_ERROR_START();
2018-01-24 03:51:37 +01:00
SERIAL_ERRORLNPGM("Bad i2c request");
2016-11-08 23:28:42 +01:00
}
}
#endif // EXPERIMENTAL_I2CBUS
#if HAS_SERVOS
/**
* M280: Get or set servo position. P<index> [S<angle>]
*/
inline void gcode_M280() {
2017-05-20 10:03:08 +02:00
if (!parser.seen('P')) return;
2017-06-27 09:36:19 +02:00
const int servo_index = parser.value_int();
2017-03-31 16:00:49 +02:00
if (WITHIN(servo_index, 0, NUM_SERVOS - 1)) {
2017-05-20 10:03:08 +02:00
if (parser.seen('S'))
MOVE_SERVO(servo_index, parser.value_int());
else {
2017-06-09 17:51:23 +02:00
SERIAL_ECHO_START();
2016-09-13 00:49:35 +02:00
SERIAL_ECHOPAIR(" Servo ", servo_index);
SERIAL_ECHOLNPAIR(": ", servo[servo_index].read());
}
}
else {
2017-06-09 17:51:23 +02:00
SERIAL_ERROR_START();
2016-09-13 00:49:35 +02:00
SERIAL_ECHOPAIR("Servo ", servo_index);
SERIAL_ECHOLNPGM(" out of range");
}
}
#endif // HAS_SERVOS
#if ENABLED(BABYSTEPPING)
#if ENABLED(BABYSTEP_ZPROBE_OFFSET)
FORCE_INLINE void mod_zprobe_zoffset(const float &offs) {
zprobe_zoffset += offs;
SERIAL_ECHO_START();
SERIAL_ECHOLNPAIR(MSG_PROBE_Z_OFFSET ": ", zprobe_zoffset);
}
#endif
/**
* M290: Babystepping
*/
inline void gcode_M290() {
#if ENABLED(BABYSTEP_XY)
for (uint8_t a = X_AXIS; a <= Z_AXIS; a++)
if (parser.seenval(axis_codes[a]) || (a == Z_AXIS && parser.seenval('S'))) {
2017-11-16 07:23:21 +01:00
const float offs = constrain(parser.value_axis_units((AxisEnum)a), -2, 2);
2017-11-17 00:35:14 +01:00
thermalManager.babystep_axis((AxisEnum)a, offs * planner.axis_steps_per_mm[a]);
#if ENABLED(BABYSTEP_ZPROBE_OFFSET)
2017-11-29 00:25:14 +01:00
if (a == Z_AXIS && (!parser.seen('P') || parser.value_bool())) mod_zprobe_zoffset(offs);
#endif
}
#else
if (parser.seenval('Z') || parser.seenval('S')) {
2017-11-12 05:16:13 +01:00
const float offs = constrain(parser.value_axis_units(Z_AXIS), -2, 2);
2017-11-17 00:35:14 +01:00
thermalManager.babystep_axis(Z_AXIS, offs * planner.axis_steps_per_mm[Z_AXIS]);
#if ENABLED(BABYSTEP_ZPROBE_OFFSET)
2017-11-29 00:25:14 +01:00
if (!parser.seen('P') || parser.value_bool()) mod_zprobe_zoffset(offs);
#endif
}
#endif
}
#endif // BABYSTEPPING
#if HAS_BUZZER
/**
* M300: Play beep sound S<frequency Hz> P<duration ms>
*/
inline void gcode_M300() {
uint16_t const frequency = parser.ushortval('S', 260);
uint16_t duration = parser.ushortval('P', 1000);
2016-06-04 21:29:01 +02:00
// Limits the tone duration to 0-5 seconds.
NOMORE(duration, 5000);
2016-08-02 06:10:53 +02:00
BUZZ(duration, frequency);
}
#endif // HAS_BUZZER
#if ENABLED(PIDTEMP)
/**
2015-08-31 04:04:30 +02:00
* M301: Set PID parameters P I D (and optionally C, L)
*
* P[float] Kp term
* I[float] Ki term (unscaled)
* D[float] Kd term (unscaled)
*
* With PID_EXTRUSION_SCALING:
2015-08-31 04:04:30 +02:00
*
* C[float] Kc term
* L[int] LPQ length
*/
inline void gcode_M301() {
// multi-extruder PID patch: M301 updates or prints a single extruder's PID values
// default behaviour (omitting E parameter) is to update for extruder 0 only
const uint8_t e = parser.byteval('E'); // extruder being updated
2016-05-27 02:43:20 +02:00
if (e < HOTENDS) { // catch bad input value
2017-05-20 10:03:08 +02:00
if (parser.seen('P')) PID_PARAM(Kp, e) = parser.value_float();
if (parser.seen('I')) PID_PARAM(Ki, e) = scalePID_i(parser.value_float());
if (parser.seen('D')) PID_PARAM(Kd, e) = scalePID_d(parser.value_float());
#if ENABLED(PID_EXTRUSION_SCALING)
2017-05-20 10:03:08 +02:00
if (parser.seen('C')) PID_PARAM(Kc, e) = parser.value_float();
if (parser.seen('L')) thermalManager.lpq_len = parser.value_float();
NOMORE(thermalManager.lpq_len, LPQ_MAX_LEN);
NOLESS(thermalManager.lpq_len, 0);
2015-08-05 13:40:36 +02:00
#endif
2016-04-29 03:18:13 +02:00
thermalManager.updatePID();
2017-06-09 17:51:23 +02:00
SERIAL_ECHO_START();
2016-05-27 02:43:20 +02:00
#if ENABLED(PID_PARAMS_PER_HOTEND)
2016-09-13 00:49:35 +02:00
SERIAL_ECHOPAIR(" e:", e); // specify extruder in serial output
2016-05-27 02:43:20 +02:00
#endif // PID_PARAMS_PER_HOTEND
2016-09-13 00:49:35 +02:00
SERIAL_ECHOPAIR(" p:", PID_PARAM(Kp, e));
SERIAL_ECHOPAIR(" i:", unscalePID_i(PID_PARAM(Ki, e)));
SERIAL_ECHOPAIR(" d:", unscalePID_d(PID_PARAM(Kd, e)));
#if ENABLED(PID_EXTRUSION_SCALING)
//Kc does not have scaling applied above, or in resetting defaults
2016-09-13 00:49:35 +02:00
SERIAL_ECHOPAIR(" c:", PID_PARAM(Kc, e));
#endif
2017-06-09 17:51:23 +02:00
SERIAL_EOL();
}
else {
2017-06-09 17:51:23 +02:00
SERIAL_ERROR_START();
2018-01-24 03:51:37 +01:00
SERIAL_ERRORLNPGM(MSG_INVALID_EXTRUDER);
}
}
#endif // PIDTEMP
#if ENABLED(PIDTEMPBED)
inline void gcode_M304() {
2017-05-20 10:03:08 +02:00
if (parser.seen('P')) thermalManager.bedKp = parser.value_float();
if (parser.seen('I')) thermalManager.bedKi = scalePID_i(parser.value_float());
if (parser.seen('D')) thermalManager.bedKd = scalePID_d(parser.value_float());
2016-04-29 03:18:13 +02:00
2017-06-09 17:51:23 +02:00
SERIAL_ECHO_START();
2016-09-13 00:49:35 +02:00
SERIAL_ECHOPAIR(" p:", thermalManager.bedKp);
SERIAL_ECHOPAIR(" i:", unscalePID_i(thermalManager.bedKi));
SERIAL_ECHOLNPAIR(" d:", unscalePID_d(thermalManager.bedKd));
}
#endif // PIDTEMPBED
2015-04-04 00:31:35 +02:00
#if defined(CHDK) || HAS_PHOTOGRAPH
/**
* M240: Trigger a camera by emulating a Canon RC-1
* See http://www.doc-diy.net/photo/rc-1_hacked/
*/
inline void gcode_M240() {
#ifdef CHDK
2015-08-05 13:40:36 +02:00
OUT_WRITE(CHDK, HIGH);
chdkHigh = millis();
chdkActive = true;
2015-04-04 00:31:35 +02:00
#elif HAS_PHOTOGRAPH
const uint8_t NUM_PULSES = 16;
const float PULSE_LENGTH = 0.01524;
for (int i = 0; i < NUM_PULSES; i++) {
WRITE(PHOTOGRAPH_PIN, HIGH);
_delay_ms(PULSE_LENGTH);
WRITE(PHOTOGRAPH_PIN, LOW);
_delay_ms(PULSE_LENGTH);
}
delay(7.33);
for (int i = 0; i < NUM_PULSES; i++) {
WRITE(PHOTOGRAPH_PIN, HIGH);
_delay_ms(PULSE_LENGTH);
WRITE(PHOTOGRAPH_PIN, LOW);
_delay_ms(PULSE_LENGTH);
}
2015-04-04 00:31:35 +02:00
#endif // !CHDK && HAS_PHOTOGRAPH
}
#endif // CHDK || PHOTOGRAPH_PIN
2016-05-31 20:47:02 +02:00
#if HAS_LCD_CONTRAST
/**
* M250: Read and optionally set the LCD contrast
*/
inline void gcode_M250() {
2017-05-20 10:03:08 +02:00
if (parser.seen('C')) set_lcd_contrast(parser.value_int());
SERIAL_PROTOCOLPGM("lcd contrast value: ");
SERIAL_PROTOCOL(lcd_contrast);
2017-06-09 17:51:23 +02:00
SERIAL_EOL();
}
#endif // HAS_LCD_CONTRAST
#if ENABLED(PREVENT_COLD_EXTRUSION)
/**
2016-07-06 17:28:09 +02:00
* M302: Allow cold extrudes, or set the minimum extrude temperature
*
* S<temperature> sets the minimum extrude temperature
* P<bool> enables (1) or disables (0) cold extrusion
*
* Examples:
*
* M302 ; report current cold extrusion state
* M302 P0 ; enable cold extrusion checking
* M302 P1 ; disables cold extrusion checking
* M302 S0 ; always allow extrusion (disables checking)
* M302 S170 ; only allow extrusion above 170
* M302 S170 P1 ; set min extrude temp to 170 but leave disabled
*/
inline void gcode_M302() {
2017-06-27 09:36:19 +02:00
const bool seen_S = parser.seen('S');
2016-07-06 17:28:09 +02:00
if (seen_S) {
2017-05-20 10:03:08 +02:00
thermalManager.extrude_min_temp = parser.value_celsius();
2016-07-06 17:28:09 +02:00
thermalManager.allow_cold_extrude = (thermalManager.extrude_min_temp == 0);
}
2017-05-20 10:03:08 +02:00
if (parser.seen('P'))
thermalManager.allow_cold_extrude = (thermalManager.extrude_min_temp == 0) || parser.value_bool();
2016-07-06 17:28:09 +02:00
else if (!seen_S) {
// Report current state
2017-06-09 17:51:23 +02:00
SERIAL_ECHO_START();
2016-07-06 17:28:09 +02:00
SERIAL_ECHOPAIR("Cold extrudes are ", (thermalManager.allow_cold_extrude ? "en" : "dis"));
2017-05-21 11:49:25 +02:00
SERIAL_ECHOPAIR("abled (min temp ", thermalManager.extrude_min_temp);
2016-07-06 17:28:09 +02:00
SERIAL_ECHOLNPGM("C)");
}
}
#endif // PREVENT_COLD_EXTRUSION
/**
* M303: PID relay autotune
*
* S<temperature> sets the target temperature. (default 150C / 70C)
* E<extruder> (-1 for the bed) (default 0)
* C<cycles>
* U<bool> with a non-zero value will apply the result to current settings
*/
inline void gcode_M303() {
#if HAS_PID_HEATING
const int e = parser.intval('E'), c = parser.intval('C', 5);
const bool u = parser.boolval('U');
2016-03-24 19:01:20 +01:00
int16_t temp = parser.celsiusval('S', e < 0 ? 70 : 150);
2017-03-31 16:00:49 +02:00
if (WITHIN(e, 0, HOTENDS - 1))
target_extruder = e;
#if DISABLED(BUSY_WHILE_HEATING)
KEEPALIVE_STATE(NOT_BUSY);
#endif
2016-04-29 03:18:13 +02:00
thermalManager.PID_autotune(temp, e, c, u);
#if DISABLED(BUSY_WHILE_HEATING)
KEEPALIVE_STATE(IN_HANDLER);
#endif
#else
2017-06-09 17:51:23 +02:00
SERIAL_ERROR_START();
SERIAL_ERRORLNPGM(MSG_ERR_M303_DISABLED);
#endif
}
2016-09-12 10:48:29 +02:00
#if ENABLED(MORGAN_SCARA)
2016-09-15 20:34:24 +02:00
2017-11-03 02:17:51 +01:00
bool SCARA_move_to_cal(const uint8_t delta_a, const uint8_t delta_b) {
2015-04-08 09:56:19 +02:00
if (IsRunning()) {
2016-09-12 10:48:29 +02:00
forward_kinematics_SCARA(delta_a, delta_b);
2017-11-03 02:17:51 +01:00
destination[X_AXIS] = cartes[X_AXIS];
destination[Y_AXIS] = cartes[Y_AXIS];
2016-09-12 10:48:29 +02:00
destination[Z_AXIS] = current_position[Z_AXIS];
prepare_move_to_destination();
return true;
}
return false;
}
/**
* M360: SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
*/
inline bool gcode_M360() {
SERIAL_ECHOLNPGM(" Cal: Theta 0");
return SCARA_move_to_cal(0, 120);
}
/**
* M361: SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
*/
inline bool gcode_M361() {
SERIAL_ECHOLNPGM(" Cal: Theta 90");
return SCARA_move_to_cal(90, 130);
}
/**
* M362: SCARA calibration: Move to cal-position PsiA (0 deg calibration)
*/
inline bool gcode_M362() {
SERIAL_ECHOLNPGM(" Cal: Psi 0");
return SCARA_move_to_cal(60, 180);
}
/**
* M363: SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
*/
inline bool gcode_M363() {
SERIAL_ECHOLNPGM(" Cal: Psi 90");
return SCARA_move_to_cal(50, 90);
}
/**
2017-05-13 07:43:12 +02:00
* M364: SCARA calibration: Move to cal-position PsiC (90 deg to Theta calibration position)
*/
inline bool gcode_M364() {
SERIAL_ECHOLNPGM(" Cal: Theta-Psi 90");
return SCARA_move_to_cal(45, 135);
}
#endif // SCARA
#if ENABLED(EXT_SOLENOID)
2017-04-14 23:36:02 +02:00
void enable_solenoid(const uint8_t num) {
switch (num) {
case 0:
OUT_WRITE(SOL0_PIN, HIGH);
break;
#if HAS_SOLENOID_1 && EXTRUDERS > 1
case 1:
OUT_WRITE(SOL1_PIN, HIGH);
break;
#endif
#if HAS_SOLENOID_2 && EXTRUDERS > 2
case 2:
OUT_WRITE(SOL2_PIN, HIGH);
break;
#endif
#if HAS_SOLENOID_3 && EXTRUDERS > 3
case 3:
OUT_WRITE(SOL3_PIN, HIGH);
break;
#endif
#if HAS_SOLENOID_4 && EXTRUDERS > 4
case 4:
OUT_WRITE(SOL4_PIN, HIGH);
break;
#endif
default:
2017-06-09 17:51:23 +02:00
SERIAL_ECHO_START();
SERIAL_ECHOLNPGM(MSG_INVALID_SOLENOID);
break;
}
}
void enable_solenoid_on_active_extruder() { enable_solenoid(active_extruder); }
void disable_all_solenoids() {
OUT_WRITE(SOL0_PIN, LOW);
#if HAS_SOLENOID_1 && EXTRUDERS > 1
OUT_WRITE(SOL1_PIN, LOW);
#endif
#if HAS_SOLENOID_2 && EXTRUDERS > 2
OUT_WRITE(SOL2_PIN, LOW);
#endif
#if HAS_SOLENOID_3 && EXTRUDERS > 3
OUT_WRITE(SOL3_PIN, LOW);
#endif
#if HAS_SOLENOID_4 && EXTRUDERS > 4
OUT_WRITE(SOL4_PIN, LOW);
#endif
}
/**
* M380: Enable solenoid on the active extruder
*/
inline void gcode_M380() { enable_solenoid_on_active_extruder(); }
/**
* M381: Disable all solenoids
*/
inline void gcode_M381() { disable_all_solenoids(); }
#endif // EXT_SOLENOID
/**
* M400: Finish all moves
*/
inline void gcode_M400() { planner.synchronize(); }
#if HAS_BED_PROBE
/**
2018-03-02 02:06:54 +01:00
* M401: Deploy and activate the Z probe
*/
inline void gcode_M401() {
DEPLOY_PROBE();
report_current_position();
}
2015-04-16 16:24:33 +02:00
/**
2018-03-02 02:06:54 +01:00
* M402: Deactivate and stow the Z probe
*/
inline void gcode_M402() {
STOW_PROBE();
2018-04-30 09:59:11 +02:00
#ifdef Z_AFTER_PROBING
2018-03-21 00:04:22 +01:00
move_z_after_probing();
#endif
report_current_position();
}
#endif // HAS_BED_PROBE
#if ENABLED(FILAMENT_WIDTH_SENSOR)
/**
* M404: Display or set (in current units) the nominal filament width (3mm, 1.75mm ) W<3.0>
*/
inline void gcode_M404() {
2017-05-20 10:03:08 +02:00
if (parser.seen('W')) {
filament_width_nominal = parser.value_linear_units();
planner.volumetric_area_nominal = CIRCLE_AREA(filament_width_nominal * 0.5);
2016-03-30 05:43:41 +02:00
}
else {
SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");
SERIAL_PROTOCOLLN(filament_width_nominal);
}
}
2015-08-05 13:40:36 +02:00
/**
* M405: Turn on filament sensor for control
*/
inline void gcode_M405() {
2017-06-27 09:36:19 +02:00
// This is technically a linear measurement, but since it's quantized to centimeters and is a different
// unit than everything else, it uses parser.value_byte() instead of parser.value_linear_units().
if (parser.seen('D')) {
meas_delay_cm = parser.value_byte();
NOMORE(meas_delay_cm, MAX_MEASUREMENT_DELAY);
}
2016-09-06 06:57:12 +02:00
if (filwidth_delay_index[1] == -1) { // Initialize the ring buffer if not done since startup
2017-12-20 07:13:49 +01:00
const int8_t temp_ratio = thermalManager.widthFil_to_size_ratio();
for (uint8_t i = 0; i < COUNT(measurement_delay); ++i)
2017-04-26 09:43:11 +02:00
measurement_delay[i] = temp_ratio;
2016-09-06 06:57:12 +02:00
filwidth_delay_index[0] = filwidth_delay_index[1] = 0;
}
filament_sensor = true;
}
/**
* M406: Turn off filament sensor for control
*/
inline void gcode_M406() {
filament_sensor = false;
2017-11-10 09:38:53 +01:00
planner.calculate_volumetric_multipliers(); // Restore correct 'volumetric_multiplier' value
}
2015-08-05 13:40:36 +02:00
/**
* M407: Get measured filament diameter on serial output
*/
inline void gcode_M407() {
2015-08-05 13:40:36 +02:00
SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
SERIAL_PROTOCOLLN(filament_width_meas);
}
#endif // FILAMENT_WIDTH_SENSOR
void quickstop_stepper() {
2018-05-20 15:19:11 +02:00
planner.quick_stop();
planner.synchronize();
set_current_from_steppers_for_axis(ALL_AXES);
SYNC_PLAN_POSITION_KINEMATIC();
}
2015-04-19 08:07:48 +02:00
2017-05-01 23:13:09 +02:00
#if HAS_LEVELING
//#define M420_C_USE_MEAN
/**
2016-11-26 06:32:47 +01:00
* M420: Enable/Disable Bed Leveling and/or set the Z fade height.
*
* S[bool] Turns leveling on or off
* Z[height] Sets the Z fade height (0 or none to disable)
* V[bool] Verbose - Print the leveling grid
*
2017-04-06 01:14:25 +02:00
* With AUTO_BED_LEVELING_UBL only:
*
2017-04-06 01:14:25 +02:00
* L[index] Load UBL mesh from index (0 is default)
* T[map] 0:Human-readable 1:CSV 2:"LCD" 4:Compact
*
* With mesh-based leveling only:
*
* C Center mesh on the mean of the lowest and highest
*/
2016-11-26 06:32:47 +01:00
inline void gcode_M420() {
const bool seen_S = parser.seen('S');
bool to_enable = seen_S ? parser.value_bool() : planner.leveling_active;
// If disabling leveling do it right away
// (Don't disable for just M420 or M420 V)
if (seen_S && !to_enable) set_bed_leveling_enabled(false);
2016-12-10 09:41:47 +01:00
2017-12-11 03:50:36 +01:00
const float oldpos[] = { current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] };
#if ENABLED(AUTO_BED_LEVELING_UBL)
2017-06-07 13:14:24 +02:00
// L to load a mesh from the EEPROM
2017-05-20 10:03:08 +02:00
if (parser.seen('L')) {
set_bed_leveling_enabled(false);
2017-06-07 13:14:24 +02:00
#if ENABLED(EEPROM_SETTINGS)
2017-10-14 04:58:45 +02:00
const int8_t storage_slot = parser.has_value() ? parser.value_int() : ubl.storage_slot;
2017-12-25 15:51:35 +01:00
const int16_t a = settings.calc_num_meshes();
2017-06-07 13:14:24 +02:00
if (!a) {
SERIAL_PROTOCOLLNPGM("?EEPROM storage not available.");
return;
}
if (!WITHIN(storage_slot, 0, a - 1)) {
SERIAL_PROTOCOLLNPGM("?Invalid storage slot.");
SERIAL_PROTOCOLLNPAIR("?Use 0 to ", a - 1);
return;
}
settings.load_mesh(storage_slot);
2017-10-14 04:58:45 +02:00
ubl.storage_slot = storage_slot;
2017-06-07 13:14:24 +02:00
#else
SERIAL_PROTOCOLLNPGM("?EEPROM storage not available.");
return;
2017-06-07 13:14:24 +02:00
#endif
}
// L or V display the map info
2017-06-07 13:14:24 +02:00
if (parser.seen('L') || parser.seen('V')) {
ubl.display_map(parser.byteval('T'));
SERIAL_ECHOPGM("Mesh is ");
if (!ubl.mesh_is_valid()) SERIAL_ECHOPGM("in");
SERIAL_ECHOLNPAIR("valid\nStorage slot: ", ubl.storage_slot);
}
2017-06-07 13:14:24 +02:00
#endif // AUTO_BED_LEVELING_UBL
#if HAS_MESH
#if ENABLED(MESH_BED_LEVELING)
#define Z_VALUES(X,Y) mbl.z_values[X][Y]
#else
#define Z_VALUES(X,Y) z_values[X][Y]
#endif
// Subtract the given value or the mean from all mesh values
if (leveling_is_valid() && parser.seen('C')) {
const float cval = parser.value_float();
#if ENABLED(AUTO_BED_LEVELING_UBL)
set_bed_leveling_enabled(false);
2018-04-28 15:17:55 +02:00
ubl.adjust_mesh_to_mean(true, cval);
#else
#if ENABLED(M420_C_USE_MEAN)
// Get the sum and average of all mesh values
float mesh_sum = 0;
for (uint8_t x = GRID_MAX_POINTS_X; x--;)
for (uint8_t y = GRID_MAX_POINTS_Y; y--;)
mesh_sum += Z_VALUES(x, y);
const float zmean = mesh_sum / float(GRID_MAX_POINTS);
#else
// Find the low and high mesh values
float lo_val = 100, hi_val = -100;
for (uint8_t x = GRID_MAX_POINTS_X; x--;)
for (uint8_t y = GRID_MAX_POINTS_Y; y--;) {
const float z = Z_VALUES(x, y);
NOMORE(lo_val, z);
NOLESS(hi_val, z);
}
// Take the mean of the lowest and highest
const float zmean = (lo_val + hi_val) / 2.0 + cval;
#endif
// If not very close to 0, adjust the mesh
if (!NEAR_ZERO(zmean)) {
set_bed_leveling_enabled(false);
// Subtract the mean from all values
for (uint8_t x = GRID_MAX_POINTS_X; x--;)
for (uint8_t y = GRID_MAX_POINTS_Y; y--;)
Z_VALUES(x, y) -= zmean;
#if ENABLED(ABL_BILINEAR_SUBDIVISION)
bed_level_virt_interpolate();
#endif
}
#endif
}
#endif // HAS_MESH
// V to print the matrix or mesh
2017-05-20 10:03:08 +02:00
if (parser.seen('V')) {
#if ABL_PLANAR
2017-05-02 23:46:11 +02:00
planner.bed_level_matrix.debug(PSTR("Bed Level Correction Matrix:"));
2017-07-24 01:47:11 +02:00
#else
if (leveling_is_valid()) {
2017-07-24 01:47:11 +02:00
#if ENABLED(AUTO_BED_LEVELING_BILINEAR)
print_bilinear_leveling_grid();
#if ENABLED(ABL_BILINEAR_SUBDIVISION)
print_bilinear_leveling_grid_virt();
#endif
#elif ENABLED(MESH_BED_LEVELING)
SERIAL_ECHOLNPGM("Mesh Bed Level data:");
2018-01-07 07:03:16 +01:00
mbl.report_mesh();
#endif
}
#endif
}
2016-11-26 06:32:47 +01:00
#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
2017-12-11 03:49:45 +01:00
if (parser.seen('Z')) set_z_fade_height(parser.value_linear_units(), false);
2016-11-26 06:32:47 +01:00
#endif
2016-12-10 09:41:47 +01:00
// Enable leveling if specified, or if previously active
set_bed_leveling_enabled(to_enable);
// Error if leveling failed to enable or reenable
if (to_enable && !planner.leveling_active) {
2017-06-09 17:51:23 +02:00
SERIAL_ERROR_START();
2016-12-10 09:41:47 +01:00
SERIAL_ERRORLNPGM(MSG_ERR_M420_FAILED);
}
2017-06-09 17:51:23 +02:00
SERIAL_ECHO_START();
SERIAL_ECHOLNPAIR("Bed Leveling ", planner.leveling_active ? MSG_ON : MSG_OFF);
#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
SERIAL_ECHO_START();
SERIAL_ECHOPGM("Fade Height ");
if (planner.z_fade_height > 0.0)
SERIAL_ECHOLN(planner.z_fade_height);
else
SERIAL_ECHOLNPGM(MSG_OFF);
#endif
2017-12-11 03:50:36 +01:00
// Report change in position
if (memcmp(oldpos, current_position, sizeof(oldpos)))
report_current_position();
2016-11-26 06:32:47 +01:00
}
#endif // HAS_LEVELING
2016-09-29 08:03:28 +02:00
2017-04-08 08:53:22 +02:00
#if ENABLED(MESH_BED_LEVELING)
2017-05-13 07:43:12 +02:00
/**
* M421: Set a single Mesh Bed Leveling Z coordinate
2017-05-13 07:43:12 +02:00
*
* Usage:
* M421 X<linear> Y<linear> Z<linear>
* M421 X<linear> Y<linear> Q<offset>
* M421 I<xindex> J<yindex> Z<linear>
* M421 I<xindex> J<yindex> Q<offset>
*/
inline void gcode_M421() {
2017-05-20 10:03:08 +02:00
const bool hasX = parser.seen('X'), hasI = parser.seen('I');
2017-11-03 02:17:51 +01:00
const int8_t ix = hasI ? parser.value_int() : hasX ? mbl.probe_index_x(parser.value_linear_units()) : -1;
2017-05-20 10:03:08 +02:00
const bool hasY = parser.seen('Y'), hasJ = parser.seen('J');
2017-11-03 02:17:51 +01:00
const int8_t iy = hasJ ? parser.value_int() : hasY ? mbl.probe_index_y(parser.value_linear_units()) : -1;
2017-05-20 10:03:08 +02:00
const bool hasZ = parser.seen('Z'), hasQ = !hasZ && parser.seen('Q');
if (int(hasI && hasJ) + int(hasX && hasY) != 1 || !(hasZ || hasQ)) {
2017-06-09 17:51:23 +02:00
SERIAL_ERROR_START();
2016-05-22 04:06:27 +02:00
SERIAL_ERRORLNPGM(MSG_ERR_M421_PARAMETERS);
}
2017-05-13 07:43:12 +02:00
else if (ix < 0 || iy < 0) {
2017-06-09 17:51:23 +02:00
SERIAL_ERROR_START();
2017-05-13 07:43:12 +02:00
SERIAL_ERRORLNPGM(MSG_ERR_MESH_XY);
}
else
2017-05-20 10:03:08 +02:00
mbl.set_z(ix, iy, parser.value_linear_units() + (hasQ ? mbl.z_values[ix][iy] : 0));
}
#elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
2016-12-16 04:18:59 +01:00
/**
* M421: Set a single Mesh Bed Leveling Z coordinate
*
2017-05-12 07:00:27 +02:00
* Usage:
2016-12-16 04:18:59 +01:00
* M421 I<xindex> J<yindex> Z<linear>
* M421 I<xindex> J<yindex> Q<offset>
2016-12-16 04:18:59 +01:00
*/
inline void gcode_M421() {
int8_t ix = parser.intval('I', -1), iy = parser.intval('J', -1);
const bool hasI = ix >= 0,
hasJ = iy >= 0,
hasZ = parser.seen('Z'),
hasQ = !hasZ && parser.seen('Q');
2016-12-16 04:18:59 +01:00
if (!hasI || !hasJ || !(hasZ || hasQ)) {
2017-06-09 17:51:23 +02:00
SERIAL_ERROR_START();
SERIAL_ERRORLNPGM(MSG_ERR_M421_PARAMETERS);
}
2017-05-13 07:43:12 +02:00
else if (!WITHIN(ix, 0, GRID_MAX_POINTS_X - 1) || !WITHIN(iy, 0, GRID_MAX_POINTS_Y - 1)) {
2017-06-09 17:51:23 +02:00
SERIAL_ERROR_START();
SERIAL_ERRORLNPGM(MSG_ERR_MESH_XY);
2016-12-16 04:18:59 +01:00
}
2017-05-13 07:43:12 +02:00
else {
2017-05-20 10:03:08 +02:00
z_values[ix][iy] = parser.value_linear_units() + (hasQ ? z_values[ix][iy] : 0);
2017-05-13 07:43:12 +02:00
#if ENABLED(ABL_BILINEAR_SUBDIVISION)
bed_level_virt_interpolate();
#endif
}
2016-12-16 04:18:59 +01:00
}
#elif ENABLED(AUTO_BED_LEVELING_UBL)
/**
* M421: Set a single Mesh Bed Leveling Z coordinate
*
2017-05-12 07:00:27 +02:00
* Usage:
* M421 I<xindex> J<yindex> Z<linear>
* M421 I<xindex> J<yindex> Q<offset>
* M421 I<xindex> J<yindex> N
2017-05-12 07:00:27 +02:00
* M421 C Z<linear>
* M421 C Q<offset>
*/
inline void gcode_M421() {
int8_t ix = parser.intval('I', -1), iy = parser.intval('J', -1);
const bool hasI = ix >= 0,
hasJ = iy >= 0,
hasC = parser.seen('C'),
hasN = parser.seen('N'),
hasZ = parser.seen('Z'),
hasQ = !hasZ && parser.seen('Q');
if (hasC) {
const mesh_index_pair location = ubl.find_closest_mesh_point_of_type(REAL, current_position[X_AXIS], current_position[Y_AXIS], USE_NOZZLE_AS_REFERENCE, NULL);
ix = location.x_index;
iy = location.y_index;
}
2017-05-12 07:00:27 +02:00
if (int(hasC) + int(hasI && hasJ) != 1 || !(hasZ || hasQ || hasN)) {
2017-06-09 17:51:23 +02:00
SERIAL_ERROR_START();
SERIAL_ERRORLNPGM(MSG_ERR_M421_PARAMETERS);
}
2017-05-13 07:43:12 +02:00
else if (!WITHIN(ix, 0, GRID_MAX_POINTS_X - 1) || !WITHIN(iy, 0, GRID_MAX_POINTS_Y - 1)) {
2017-06-09 17:51:23 +02:00
SERIAL_ERROR_START();
SERIAL_ERRORLNPGM(MSG_ERR_MESH_XY);
}
2017-05-13 07:43:12 +02:00
else
ubl.z_values[ix][iy] = hasN ? NAN : parser.value_linear_units() + (hasQ ? ubl.z_values[ix][iy] : 0);
}
2017-05-12 07:00:27 +02:00
#endif // AUTO_BED_LEVELING_UBL
#if HAS_M206_COMMAND
2017-03-05 01:01:33 +01:00
/**
* M428: Set home_offset based on the distance between the
* current_position and the nearest "reference point."
* If an axis is past center its endstop position
* is the reference-point. Otherwise it uses 0. This allows
* the Z offset to be set near the bed when using a max endstop.
*
* M428 can't be used more than 2cm away from 0 or an endstop.
*
* Use M206 to set these values directly.
*/
inline void gcode_M428() {
if (axis_unhomed_error()) return;
float diff[XYZ];
2017-03-05 01:01:33 +01:00
LOOP_XYZ(i) {
diff[i] = base_home_pos((AxisEnum)i) - current_position[i];
if (!WITHIN(diff[i], -20, 20) && home_dir((AxisEnum)i) > 0)
diff[i] = -current_position[i];
if (!WITHIN(diff[i], -20, 20)) {
SERIAL_ERROR_START();
SERIAL_ERRORLNPGM(MSG_ERR_M428_TOO_FAR);
LCD_ALERTMESSAGEPGM("Err: Too far!");
BUZZ(200, 40);
return;
}
2015-04-30 03:26:16 +02:00
}
LOOP_XYZ(i) set_home_offset((AxisEnum)i, diff[i]);
report_current_position();
LCD_MESSAGEPGM(MSG_HOME_OFFSETS_APPLIED);
BUZZ(100, 659);
BUZZ(100, 698);
}
2017-03-05 01:01:33 +01:00
#endif // HAS_M206_COMMAND
2015-04-30 03:26:16 +02:00
/**
* M500: Store settings in EEPROM
*/
inline void gcode_M500() {
2017-04-10 04:47:49 +02:00
(void)settings.save();
}
/**
* M501: Read settings from EEPROM
*/
inline void gcode_M501() {
2017-04-10 04:47:49 +02:00
(void)settings.load();
}
/**
* M502: Revert to default settings
*/
inline void gcode_M502() {
2017-04-10 04:47:49 +02:00
(void)settings.reset();
}
#if DISABLED(DISABLE_M503)
/**
* M503: print settings currently in memory
*/
inline void gcode_M503() {
2017-12-07 03:57:05 +01:00
(void)settings.report(parser.seen('S') && !parser.value_bool());
}
#endif
2018-01-03 00:22:48 +01:00
#if ENABLED(EEPROM_SETTINGS)
/**
* M504: Validate EEPROM Contents
*/
inline void gcode_M504() {
if (settings.validate()) {
SERIAL_ECHO_START();
SERIAL_ECHOLNPGM("EEPROM OK");
}
}
#endif
#if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
/**
* M540: Set whether SD card print should abort on endstop hit (M540 S<0|1>)
*/
inline void gcode_M540() {
2018-05-20 15:19:11 +02:00
if (parser.seen('S')) planner.abort_on_endstop_hit = parser.value_bool();
}
#endif // ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
2016-06-15 03:05:20 +02:00
#if HAS_BED_PROBE
inline void gcode_M851() {
2018-03-05 09:10:22 +01:00
if (parser.seenval('Z')) {
2017-05-20 10:03:08 +02:00
const float value = parser.value_linear_units();
2018-03-05 09:10:22 +01:00
if (WITHIN(value, Z_PROBE_OFFSET_RANGE_MIN, Z_PROBE_OFFSET_RANGE_MAX))
zprobe_zoffset = value;
else {
SERIAL_ERROR_START();
SERIAL_ERRORLNPGM("?Z out of range (" STRINGIFY(Z_PROBE_OFFSET_RANGE_MIN) " to " STRINGIFY(Z_PROBE_OFFSET_RANGE_MAX) ")");
}
2018-03-05 09:10:22 +01:00
return;
}
2018-03-05 09:10:22 +01:00
SERIAL_ECHO_START();
SERIAL_ECHOPGM(MSG_PROBE_Z_OFFSET);
2017-11-25 21:04:21 +01:00
SERIAL_ECHOLNPAIR(": ", zprobe_zoffset);
}
2016-06-15 03:05:20 +02:00
#endif // HAS_BED_PROBE
2017-11-05 01:21:41 +01:00
#if ENABLED(SKEW_CORRECTION_GCODE)
/**
* M852: Get or set the machine skew factors. Reports current values with no arguments.
*
* S[xy_factor] - Alias for 'I'
* I[xy_factor] - New XY skew factor
* J[xz_factor] - New XZ skew factor
* K[yz_factor] - New YZ skew factor
*/
inline void gcode_M852() {
2017-12-11 03:55:47 +01:00
uint8_t ijk = 0, badval = 0, setval = 0;
2017-11-05 01:21:41 +01:00
if (parser.seen('I') || parser.seen('S')) {
2017-12-11 03:55:47 +01:00
++ijk;
2017-11-05 01:21:41 +01:00
const float value = parser.value_linear_units();
2017-12-11 03:55:47 +01:00
if (WITHIN(value, SKEW_FACTOR_MIN, SKEW_FACTOR_MAX)) {
if (planner.xy_skew_factor != value) {
planner.xy_skew_factor = value;
++setval;
}
}
2017-11-05 01:21:41 +01:00
else
2017-12-11 03:55:47 +01:00
++badval;
2017-11-05 01:21:41 +01:00
}
#if ENABLED(SKEW_CORRECTION_FOR_Z)
if (parser.seen('J')) {
2017-12-11 03:55:47 +01:00
++ijk;
2017-11-05 01:21:41 +01:00
const float value = parser.value_linear_units();
2017-12-11 03:55:47 +01:00
if (WITHIN(value, SKEW_FACTOR_MIN, SKEW_FACTOR_MAX)) {
if (planner.xz_skew_factor != value) {
planner.xz_skew_factor = value;
++setval;
}
}
2017-11-05 01:21:41 +01:00
else
2017-12-11 03:55:47 +01:00
++badval;
2017-11-05 01:21:41 +01:00
}
if (parser.seen('K')) {
2017-12-11 03:55:47 +01:00
++ijk;
2017-11-05 01:21:41 +01:00
const float value = parser.value_linear_units();
2017-12-11 03:55:47 +01:00
if (WITHIN(value, SKEW_FACTOR_MIN, SKEW_FACTOR_MAX)) {
if (planner.yz_skew_factor != value) {
planner.yz_skew_factor = value;
++setval;
}
}
2017-11-05 01:21:41 +01:00
else
2017-12-11 03:55:47 +01:00
++badval;
2017-11-05 01:21:41 +01:00
}
#endif
if (badval)
SERIAL_ECHOLNPGM(MSG_SKEW_MIN " " STRINGIFY(SKEW_FACTOR_MIN) " " MSG_SKEW_MAX " " STRINGIFY(SKEW_FACTOR_MAX));
2017-12-11 03:55:47 +01:00
// When skew is changed the current position changes
if (setval) {
set_current_from_steppers_for_axis(ALL_AXES);
SYNC_PLAN_POSITION_KINEMATIC();
report_current_position();
}
2017-11-05 01:21:41 +01:00
if (!ijk) {
SERIAL_ECHO_START();
2018-01-24 01:58:10 +01:00
SERIAL_ECHOPGM(MSG_SKEW_FACTOR " XY: ");
SERIAL_ECHO_F(planner.xy_skew_factor, 6);
2018-01-05 17:18:43 +01:00
SERIAL_EOL();
2017-11-05 01:21:41 +01:00
#if ENABLED(SKEW_CORRECTION_FOR_Z)
SERIAL_ECHOPAIR(" XZ: ", planner.xz_skew_factor);
SERIAL_ECHOLNPAIR(" YZ: ", planner.yz_skew_factor);
#else
SERIAL_EOL();
#endif
}
}
#endif // SKEW_CORRECTION_GCODE
#if ENABLED(ADVANCED_PAUSE_FEATURE)
/**
2015-06-16 02:54:41 +02:00
* M600: Pause for filament change
*
2017-12-27 05:51:55 +01:00
* E[distance] - Retract the filament this far
2015-06-16 02:54:41 +02:00
* Z[distance] - Move the Z axis by this distance
* X[position] - Move to this X position, with Y
* Y[position] - Move to this Y position, with X
2017-12-27 05:51:55 +01:00
* U[distance] - Retract distance for removal (manual reload)
* L[distance] - Extrude distance for insertion (manual reload)
* B[count] - Number of times to beep, -1 for indefinite (if equipped with a buzzer)
* T[toolhead] - Select extruder for filament change
2015-06-16 02:54:41 +02:00
*
* Default values are used for omitted arguments.
*/
inline void gcode_M600() {
point_t park_point = NOZZLE_PARK_POINT;
2017-12-27 05:51:55 +01:00
if (get_target_extruder_from_command(600)) return;
// Show initial message
#if ENABLED(ULTIPANEL)
lcd_advanced_pause_show_message(ADVANCED_PAUSE_MESSAGE_INIT, ADVANCED_PAUSE_MODE_PAUSE_PRINT, target_extruder);
#endif
#if ENABLED(HOME_BEFORE_FILAMENT_CHANGE)
// Don't allow filament change without homing first
if (axis_unhomed_error()) home_all_axes();
#endif
#if EXTRUDERS > 1
// Change toolhead if specified
2017-12-27 05:51:55 +01:00
uint8_t active_extruder_before_filament_change = active_extruder;
if (active_extruder != target_extruder)
tool_change(target_extruder, 0, true);
#endif
// Initial retract before move to filament change position
const float retract = -ABS(parser.seen('E') ? parser.value_axis_units(E_AXIS) : 0
#ifdef PAUSE_PARK_RETRACT_LENGTH
2017-12-27 05:51:55 +01:00
+ (PAUSE_PARK_RETRACT_LENGTH)
2017-02-18 06:56:48 +01:00
#endif
2017-12-27 05:51:55 +01:00
);
// Lift Z axis
2018-01-20 19:25:44 +01:00
if (parser.seenval('Z')) park_point.z = parser.linearval('Z');
// Move XY axes to filament change position or given position
2018-01-20 19:25:44 +01:00
if (parser.seenval('X')) park_point.x = parser.linearval('X');
if (parser.seenval('Y')) park_point.y = parser.linearval('Y');
#if HOTENDS > 1 && DISABLED(DUAL_X_CARRIAGE) && DISABLED(DELTA)
park_point.x += (active_extruder ? hotend_offset[X_AXIS][active_extruder] : 0);
park_point.y += (active_extruder ? hotend_offset[Y_AXIS][active_extruder] : 0);
#endif
// Unload filament
const float unload_length = -ABS(parser.seen('U') ? parser.value_axis_units(E_AXIS) :
2017-12-27 05:51:55 +01:00
filament_change_unload_length[active_extruder]);
2015-08-05 13:40:36 +02:00
// Slow load filament
constexpr float slow_load_length = FILAMENT_CHANGE_SLOW_LOAD_LENGTH;
// Fast load filament
const float fast_load_length = ABS(parser.seen('L') ? parser.value_axis_units(E_AXIS) :
2017-12-27 05:51:55 +01:00
filament_change_load_length[active_extruder]);
const int beep_count = parser.intval('B',
2017-12-27 05:51:55 +01:00
#ifdef FILAMENT_CHANGE_ALERT_BEEPS
FILAMENT_CHANGE_ALERT_BEEPS
#else
-1
#endif
);
const bool job_running = print_job_timer.isRunning();
2015-08-05 13:40:36 +02:00
2017-12-27 05:51:55 +01:00
if (pause_print(retract, park_point, unload_length, true)) {
wait_for_filament_reload(beep_count);
resume_print(slow_load_length, fast_load_length, ADVANCED_PAUSE_PURGE_LENGTH, beep_count);
}
#if EXTRUDERS > 1
// Restore toolhead if it was changed
2017-12-27 05:51:55 +01:00
if (active_extruder_before_filament_change != active_extruder)
tool_change(active_extruder_before_filament_change, 0, true);
#endif
// Resume the print job timer if it was running
if (job_running) print_job_timer.start();
}
2017-12-27 05:51:55 +01:00
/**
* M603: Configure filament change
*
* T[toolhead] - Select extruder to configure, active extruder if not specified
* U[distance] - Retract distance for removal, for the specified extruder
* L[distance] - Extrude distance for insertion, for the specified extruder
*
*/
inline void gcode_M603() {
if (get_target_extruder_from_command(603)) return;
// Unload length
if (parser.seen('U')) {
filament_change_unload_length[target_extruder] = ABS(parser.value_axis_units(E_AXIS));
2017-12-27 05:51:55 +01:00
#if ENABLED(PREVENT_LENGTHY_EXTRUDE)
NOMORE(filament_change_unload_length[target_extruder], EXTRUDE_MAXLENGTH);
#endif
}
// Load length
if (parser.seen('L')) {
filament_change_load_length[target_extruder] = ABS(parser.value_axis_units(E_AXIS));
2017-12-27 05:51:55 +01:00
#if ENABLED(PREVENT_LENGTHY_EXTRUDE)
NOMORE(filament_change_load_length[target_extruder], EXTRUDE_MAXLENGTH);
#endif
}
}
#endif // ADVANCED_PAUSE_FEATURE
#if ENABLED(MK2_MULTIPLEXER)
inline void select_multiplexed_stepper(const uint8_t e) {
planner.synchronize();
disable_e_steppers();
WRITE(E_MUX0_PIN, TEST(e, 0) ? HIGH : LOW);
WRITE(E_MUX1_PIN, TEST(e, 1) ? HIGH : LOW);
WRITE(E_MUX2_PIN, TEST(e, 2) ? HIGH : LOW);
safe_delay(100);
}
#endif // MK2_MULTIPLEXER
#if ENABLED(DUAL_X_CARRIAGE)
/**
* M605: Set dual x-carriage movement mode
*
* M605 S0: Full control mode. The slicer has full control over x-carriage movement
* M605 S1: Auto-park mode. The inactive head will auto park/unpark without slicer involvement
* M605 S2 [Xnnn] [Rmmm]: Duplication mode. The second extruder will duplicate the first with nnn
* units x-offset and an optional differential hotend temperature of
* mmm degrees. E.g., with "M605 S2 X100 R2" the second extruder will duplicate
* the first with a spacing of 100mm in the x direction and 2 degrees hotter.
*
* Note: the X axis should be homed after changing dual x-carriage mode.
*/
inline void gcode_M605() {
planner.synchronize();
2017-05-20 10:03:08 +02:00
if (parser.seen('S')) dual_x_carriage_mode = (DualXMode)parser.value_byte();
switch (dual_x_carriage_mode) {
2016-11-03 03:38:26 +01:00
case DXC_FULL_CONTROL_MODE:
case DXC_AUTO_PARK_MODE:
break;
case DXC_DUPLICATION_MODE:
if (parser.seen('X')) duplicate_extruder_x_offset = MAX(parser.value_linear_units(), X2_MIN_POS - x_home_pos(0));
2017-05-20 10:03:08 +02:00
if (parser.seen('R')) duplicate_extruder_temp_offset = parser.value_celsius_diff();
2017-06-09 17:51:23 +02:00
SERIAL_ECHO_START();
SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
2015-04-04 06:43:30 +02:00
SERIAL_CHAR(' ');
2016-05-27 02:43:20 +02:00
SERIAL_ECHO(hotend_offset[X_AXIS][0]);
2015-04-04 06:43:30 +02:00
SERIAL_CHAR(',');
2016-05-27 02:43:20 +02:00
SERIAL_ECHO(hotend_offset[Y_AXIS][0]);
2015-04-04 06:43:30 +02:00
SERIAL_CHAR(' ');
SERIAL_ECHO(duplicate_extruder_x_offset);
2015-04-04 06:43:30 +02:00
SERIAL_CHAR(',');
2016-05-27 02:43:20 +02:00
SERIAL_ECHOLN(hotend_offset[Y_AXIS][1]);
break;
default:
dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
break;
}
active_extruder_parked = false;
extruder_duplication_enabled = false;
delayed_move_time = 0;
}
2016-07-20 19:30:10 +02:00
#elif ENABLED(DUAL_NOZZLE_DUPLICATION_MODE)
inline void gcode_M605() {
planner.synchronize();
extruder_duplication_enabled = parser.intval('S') == int(DXC_DUPLICATION_MODE);
2017-06-09 17:51:23 +02:00
SERIAL_ECHO_START();
2016-08-21 03:11:08 +02:00
SERIAL_ECHOLNPAIR(MSG_DUPLICATION_MODE, extruder_duplication_enabled ? MSG_ON : MSG_OFF);
2016-07-20 19:30:10 +02:00
}
#endif // DUAL_NOZZLE_DUPLICATION_MODE
2017-12-27 05:51:55 +01:00
#if ENABLED(FILAMENT_LOAD_UNLOAD_GCODES)
/**
2017-12-27 05:51:55 +01:00
* M701: Load filament
*
* T<extruder> - Optional extruder number. Current extruder if omitted.
* Z<distance> - Move the Z axis by this distance
* L<distance> - Extrude distance for insertion (positive value) (manual reload)
*
2017-12-27 05:51:55 +01:00
* Default values are used for omitted arguments.
*/
2017-12-27 05:51:55 +01:00
inline void gcode_M701() {
point_t park_point = NOZZLE_PARK_POINT;
2017-03-02 00:40:07 +01:00
#if ENABLED(NO_MOTION_BEFORE_HOMING)
// Only raise Z if the machine is homed
if (axis_unhomed_error()) park_point.z = 0;
#endif
2018-01-04 09:13:10 +01:00
if (get_target_extruder_from_command(701)) return;
2017-12-27 05:51:55 +01:00
// Z axis lift
if (parser.seenval('Z')) park_point.z = parser.linearval('Z');
2017-12-15 22:02:39 +01:00
// Show initial "wait for load" message
2017-12-27 05:51:55 +01:00
#if ENABLED(ULTIPANEL)
lcd_advanced_pause_show_message(ADVANCED_PAUSE_MESSAGE_LOAD, ADVANCED_PAUSE_MODE_LOAD_FILAMENT, target_extruder);
2017-12-15 22:02:39 +01:00
#endif
2017-12-27 05:51:55 +01:00
#if EXTRUDERS > 1
// Change toolhead if specified
uint8_t active_extruder_before_filament_change = active_extruder;
if (active_extruder != target_extruder)
tool_change(target_extruder, 0, true);
2017-12-15 22:02:39 +01:00
#endif
2017-12-27 05:51:55 +01:00
// Lift Z axis
if (park_point.z > 0)
do_blocking_move_to_z(MIN(current_position[Z_AXIS] + park_point.z, Z_MAX_POS), NOZZLE_PARK_Z_FEEDRATE);
2017-12-15 22:02:39 +01:00
constexpr float slow_load_length = FILAMENT_CHANGE_SLOW_LOAD_LENGTH;
const float fast_load_length = ABS(parser.seen('L') ? parser.value_axis_units(E_AXIS) : filament_change_load_length[active_extruder]);
load_filament(slow_load_length, fast_load_length, ADVANCED_PAUSE_PURGE_LENGTH, FILAMENT_CHANGE_ALERT_BEEPS,
true, thermalManager.wait_for_heating(target_extruder), ADVANCED_PAUSE_MODE_LOAD_FILAMENT);
2017-12-15 22:02:39 +01:00
2017-12-27 05:51:55 +01:00
// Restore Z axis
if (park_point.z > 0)
do_blocking_move_to_z(MAX(current_position[Z_AXIS] - park_point.z, 0), NOZZLE_PARK_Z_FEEDRATE);
2017-12-15 22:02:39 +01:00
2017-12-27 05:51:55 +01:00
#if EXTRUDERS > 1
// Restore toolhead if it was changed
if (active_extruder_before_filament_change != active_extruder)
tool_change(active_extruder_before_filament_change, 0, true);
#endif
2017-12-15 22:02:39 +01:00
2017-12-27 05:51:55 +01:00
// Show status screen
#if ENABLED(ULTIPANEL)
lcd_advanced_pause_show_message(ADVANCED_PAUSE_MESSAGE_STATUS);
#endif
}
2017-12-15 22:02:39 +01:00
2017-12-27 05:51:55 +01:00
/**
* M702: Unload filament
*
* T<extruder> - Optional extruder number. If omitted, current extruder
2017-12-27 05:51:55 +01:00
* (or ALL extruders with FILAMENT_UNLOAD_ALL_EXTRUDERS).
* Z<distance> - Move the Z axis by this distance
* U<distance> - Retract distance for removal (manual reload)
2017-12-27 05:51:55 +01:00
*
* Default values are used for omitted arguments.
*/
inline void gcode_M702() {
point_t park_point = NOZZLE_PARK_POINT;
2017-12-15 22:02:39 +01:00
#if ENABLED(NO_MOTION_BEFORE_HOMING)
// Only raise Z if the machine is homed
if (axis_unhomed_error()) park_point.z = 0;
#endif
2017-12-15 22:02:39 +01:00
2017-12-27 05:51:55 +01:00
if (get_target_extruder_from_command(702)) return;
2017-12-15 22:02:39 +01:00
2017-12-27 05:51:55 +01:00
// Z axis lift
if (parser.seenval('Z')) park_point.z = parser.linearval('Z');
2017-12-15 22:02:39 +01:00
2017-12-27 05:51:55 +01:00
// Show initial message
#if ENABLED(ULTIPANEL)
lcd_advanced_pause_show_message(ADVANCED_PAUSE_MESSAGE_UNLOAD, ADVANCED_PAUSE_MODE_UNLOAD_FILAMENT, target_extruder);
#endif
2017-12-15 22:02:39 +01:00
2017-12-27 05:51:55 +01:00
#if EXTRUDERS > 1
// Change toolhead if specified
uint8_t active_extruder_before_filament_change = active_extruder;
if (active_extruder != target_extruder)
tool_change(target_extruder, 0, true);
#endif
2017-12-27 05:51:55 +01:00
// Lift Z axis
if (park_point.z > 0)
do_blocking_move_to_z(MIN(current_position[Z_AXIS] + park_point.z, Z_MAX_POS), NOZZLE_PARK_Z_FEEDRATE);
2017-12-15 22:02:39 +01:00
2017-12-27 05:51:55 +01:00
// Unload filament
#if EXTRUDERS > 1 && ENABLED(FILAMENT_UNLOAD_ALL_EXTRUDERS)
if (!parser.seenval('T')) {
HOTEND_LOOP() {
if (e != active_extruder) tool_change(e, 0, true);
unload_filament(-filament_change_unload_length[e], true, ADVANCED_PAUSE_MODE_UNLOAD_FILAMENT);
}
2017-12-15 22:02:39 +01:00
}
2017-12-27 05:51:55 +01:00
else
#endif
{
// Unload length
const float unload_length = -ABS(parser.seen('U') ? parser.value_axis_units(E_AXIS) :
2017-12-27 05:51:55 +01:00
filament_change_unload_length[target_extruder]);
unload_filament(unload_length, true, ADVANCED_PAUSE_MODE_UNLOAD_FILAMENT);
2017-12-15 22:02:39 +01:00
}
2017-12-27 05:51:55 +01:00
// Restore Z axis
if (park_point.z > 0)
do_blocking_move_to_z(MAX(current_position[Z_AXIS] - park_point.z, 0), NOZZLE_PARK_Z_FEEDRATE);
2017-04-15 05:44:08 +02:00
2017-12-27 05:51:55 +01:00
#if EXTRUDERS > 1
// Restore toolhead if it was changed
if (active_extruder_before_filament_change != active_extruder)
tool_change(active_extruder_before_filament_change, 0, true);
#endif
2017-12-27 05:51:55 +01:00
// Show status screen
#if ENABLED(ULTIPANEL)
lcd_advanced_pause_show_message(ADVANCED_PAUSE_MESSAGE_STATUS);
#endif
2017-12-15 22:02:39 +01:00
}
2017-11-16 22:16:21 +01:00
2017-12-27 05:51:55 +01:00
#endif // FILAMENT_LOAD_UNLOAD_GCODES
#if ENABLED(MAX7219_GCODE)
/**
* M7219: Control the Max7219 LED matrix
*
* I - Initialize (clear) the matrix
* F - Fill the matrix (set all bits)
* P - Dump the LEDs[] array values
* C<column> - Set a column to the 8-bit value V
* R<row> - Set a row to the 8-bit value V
* X<pos> - X position of an LED to set or toggle
* Y<pos> - Y position of an LED to set or toggle
* V<value> - The potentially 32-bit value or on/off state to set
* (for example: a chain of 4 Max7219 devices can have 32 bit
* rows or columns depending upon rotation)
*/
inline void gcode_M7219() {
if (parser.seen('I')) {
max7219.register_setup();
2018-08-21 03:31:40 +02:00
max7219.clear();
}
2018-08-21 03:31:40 +02:00
if (parser.seen('F')) max7219.fill();
const uint32_t v = parser.ulongval('V');
if (parser.seenval('R')) {
const uint8_t r = parser.value_byte();
max7219.set_row(r, v);
}
else if (parser.seenval('C')) {
const uint8_t c = parser.value_byte();
max7219.set_column(c, v);
}
else if (parser.seenval('X') || parser.seenval('Y')) {
const uint8_t x = parser.byteval('X'), y = parser.byteval('Y');
if (parser.seenval('V'))
max7219.led_set(x, y, parser.boolval('V'));
else
max7219.led_toggle(x, y);
}
else if (parser.seen('D')) {
2018-08-21 03:31:40 +02:00
const uint8_t line = parser.byteval('D') + (parser.byteval('U') << 3);
if (line < MAX7219_LINES) {
max7219.led_line[line] = v;
return max7219.refresh_line(line);
}
}
if (parser.seen('P')) {
2018-08-21 03:31:40 +02:00
for (uint8_t r = 0; r < MAX7219_LINES; r++) {
SERIAL_ECHOPGM("led_line[");
2018-08-21 03:31:40 +02:00
if (r < 10) SERIAL_CHAR(' ');
SERIAL_ECHO(int(r));
2018-09-17 05:03:55 +02:00
SERIAL_ECHOPGM("]=");
for (uint8_t b = 8; b--;) SERIAL_CHAR('0' + TEST(max7219.led_line[r], b));
SERIAL_EOL();
}
}
2017-12-15 22:02:39 +01:00
}
#endif // MAX7219_GCODE
2016-05-04 18:53:17 +02:00
#if ENABLED(LIN_ADVANCE)
/**
2018-03-01 22:23:28 +01:00
* M900: Get or Set Linear Advance K-factor
*
2018-03-01 22:23:28 +01:00
* K<factor> Set advance K factor
*/
2017-04-17 07:27:49 +02:00
inline void gcode_M900() {
if (parser.seenval('K')) {
const float newK = parser.floatval('K');
if (WITHIN(newK, 0, 10)) {
planner.synchronize();
planner.extruder_advance_K = newK;
}
else
SERIAL_PROTOCOLLNPGM("?K value out of range (0-10).");
}
else {
SERIAL_ECHO_START();
SERIAL_ECHOLNPAIR("Advance K=", planner.extruder_advance_K);
}
2017-12-15 22:02:39 +01:00
}
#endif // LIN_ADVANCE
2017-12-15 22:02:39 +01:00
#if HAS_TRINAMIC
#if ENABLED(TMC_DEBUG)
inline void gcode_M122() {
2018-01-12 01:52:54 +01:00
if (parser.seen('S'))
2018-01-10 02:05:37 +01:00
tmc_set_report_status(parser.value_bool());
else
tmc_report_all();
2017-12-15 22:02:39 +01:00
}
2018-01-10 02:05:37 +01:00
#endif // TMC_DEBUG
2017-04-15 05:44:08 +02:00
/**
* M906: Set motor current in milliamps using axis codes X, Y, Z, E
2018-09-09 04:17:02 +02:00
* Uses axis codes A, B, C, D, E for Hangprinter
* Report driver currents when no axis specified
*/
inline void gcode_M906() {
#define TMC_SAY_CURRENT(Q) tmc_get_current(stepper##Q, TMC_##Q)
2018-05-10 06:42:40 +02:00
#define TMC_SET_CURRENT(Q) tmc_set_current(stepper##Q, value)
2018-01-10 02:05:37 +01:00
bool report = true;
const uint8_t index = parser.byteval('I');
2018-09-09 04:17:02 +02:00
LOOP_NUM_AXIS(i) if (uint16_t value = parser.intval(RAW_AXIS_CODES(i))) {
report = false;
switch (i) {
2018-09-09 04:17:02 +02:00
// Assumes {A_AXIS, B_AXIS, C_AXIS} == {X_AXIS, Y_AXIS, Z_AXIS}
case X_AXIS:
2018-07-25 02:50:49 +02:00
#if AXIS_IS_TMC(X)
if (index < 2) TMC_SET_CURRENT(X);
#endif
2018-07-25 02:50:49 +02:00
#if AXIS_IS_TMC(X2)
if (!(index & 1)) TMC_SET_CURRENT(X2);
#endif
break;
case Y_AXIS:
2018-07-25 02:50:49 +02:00
#if AXIS_IS_TMC(Y)
if (index < 2) TMC_SET_CURRENT(Y);
#endif
2018-07-25 02:50:49 +02:00
#if AXIS_IS_TMC(Y2)
if (!(index & 1)) TMC_SET_CURRENT(Y2);
#endif
break;
case Z_AXIS:
2018-07-25 02:50:49 +02:00
#if AXIS_IS_TMC(Z)
if (index < 2) TMC_SET_CURRENT(Z);
#endif
2018-07-25 02:50:49 +02:00
#if AXIS_IS_TMC(Z2)
if (!(index & 1)) TMC_SET_CURRENT(Z2);
#endif
break;
case E_AXIS: {
if (get_target_extruder_from_command(906)) return;
switch (target_extruder) {
2018-07-25 02:50:49 +02:00
#if AXIS_IS_TMC(E0)
case 0: TMC_SET_CURRENT(E0); break;
#endif
2018-09-09 04:17:02 +02:00
#if ENABLED(HANGPRINTER)
// Avoid setting the D-current
#if AXIS_IS_TMC(E1) && EXTRUDERS > 1
case 1: TMC_SET_CURRENT(E1); break;
#endif
#if AXIS_IS_TMC(E2) && EXTRUDERS > 2
case 2: TMC_SET_CURRENT(E2); break;
#endif
#if AXIS_IS_TMC(E3) && EXTRUDERS > 3
case 3: TMC_SET_CURRENT(E3); break;
#endif
#if AXIS_IS_TMC(E4) && EXTRUDERS > 4
case 4: TMC_SET_CURRENT(E4); break;
#endif
#else
#if AXIS_IS_TMC(E1)
case 1: TMC_SET_CURRENT(E1); break;
#endif
#if AXIS_IS_TMC(E2)
case 2: TMC_SET_CURRENT(E2); break;
#endif
#if AXIS_IS_TMC(E3)
case 3: TMC_SET_CURRENT(E3); break;
#endif
#if AXIS_IS_TMC(E4)
case 4: TMC_SET_CURRENT(E4); break;
#endif
#endif
2018-09-09 04:17:02 +02:00
}
} break;
#if ENABLED(HANGPRINTER)
case D_AXIS:
// D is connected on the first of E1, E2, E3, E4 output that is not an extruder
#if AXIS_IS_TMC(E1) && EXTRUDERS == 1
TMC_SET_CURRENT(E1); break;
#endif
2018-09-09 04:17:02 +02:00
#if AXIS_IS_TMC(E2) && EXTRUDERS == 2
TMC_SET_CURRENT(E2); break;
#endif
2018-09-09 04:17:02 +02:00
#if AXIS_IS_TMC(E3) && EXTRUDERS == 3
TMC_SET_CURRENT(E3); break;
#endif
2018-09-09 04:17:02 +02:00
#if AXIS_IS_TMC(E4) && EXTRUDERS == 4
TMC_SET_CURRENT(E4); break;
#endif
#endif
}
}
2017-12-15 22:02:39 +01:00
if (report) {
2018-07-25 02:50:49 +02:00
#if AXIS_IS_TMC(X)
TMC_SAY_CURRENT(X);
#endif
2018-07-25 02:50:49 +02:00
#if AXIS_IS_TMC(X2)
TMC_SAY_CURRENT(X2);
#endif
2018-07-25 02:50:49 +02:00
#if AXIS_IS_TMC(Y)
TMC_SAY_CURRENT(Y);
#endif
2018-07-25 02:50:49 +02:00
#if AXIS_IS_TMC(Y2)
TMC_SAY_CURRENT(Y2);
#endif
2018-07-25 02:50:49 +02:00
#if AXIS_IS_TMC(Z)
TMC_SAY_CURRENT(Z);
#endif
2018-07-25 02:50:49 +02:00
#if AXIS_IS_TMC(Z2)
TMC_SAY_CURRENT(Z2);
#endif
2018-07-25 02:50:49 +02:00
#if AXIS_IS_TMC(E0)
TMC_SAY_CURRENT(E0);
#endif
2018-09-09 04:17:02 +02:00
#if ENABLED(HANGPRINTER)
// D is connected on the first of E1, E2, E3, E4 output that is not an extruder
#if AXIS_IS_TMC(E1) && EXTRUDERS == 1
TMC_SAY_CURRENT(E1);
#endif
#if AXIS_IS_TMC(E2) && EXTRUDERS == 2
TMC_SAY_CURRENT(E2);
#endif
#if AXIS_IS_TMC(E3) && EXTRUDERS == 3
TMC_SAY_CURRENT(E3);
#endif
#if AXIS_IS_TMC(E4) && EXTRUDERS == 4
TMC_SAY_CURRENT(E4);
#endif
#else
#if AXIS_IS_TMC(E1)
TMC_SAY_CURRENT(E1);
#endif
#if AXIS_IS_TMC(E2)
TMC_SAY_CURRENT(E2);
#endif
#if AXIS_IS_TMC(E3)
TMC_SAY_CURRENT(E3);
#endif
#if AXIS_IS_TMC(E4)
TMC_SAY_CURRENT(E4);
#endif
#endif
}
}
2018-07-25 02:50:49 +02:00
#define M91x_USE(ST) (AXIS_DRIVER_TYPE(ST, TMC2130) || (AXIS_DRIVER_TYPE(ST, TMC2208) && PIN_EXISTS(ST##_SERIAL_RX)))
2018-05-12 14:51:00 +02:00
#define M91x_USE_E(N) (E_STEPPERS > N && M91x_USE(E##N))
2018-05-10 06:42:40 +02:00
/**
2017-12-15 22:02:39 +01:00
* M911: Report TMC stepper driver overtemperature pre-warn flag
* This flag is held by the library, persisting until cleared by M912
*/
inline void gcode_M911() {
2018-07-25 02:50:49 +02:00
#if M91x_USE(X)
2018-03-07 04:03:57 +01:00
tmc_report_otpw(stepperX, TMC_X);
#endif
2018-05-10 06:42:40 +02:00
#if M91x_USE(X2)
tmc_report_otpw(stepperX2, TMC_X2);
#endif
2018-07-25 02:50:49 +02:00
#if M91x_USE(Y)
2018-05-10 06:42:40 +02:00
tmc_report_otpw(stepperY, TMC_Y);
#endif
2018-05-10 06:42:40 +02:00
#if M91x_USE(Y2)
tmc_report_otpw(stepperY2, TMC_Y2);
#endif
2018-07-25 02:50:49 +02:00
#if M91x_USE(Z)
2018-05-10 06:42:40 +02:00
tmc_report_otpw(stepperZ, TMC_Z);
#endif
2018-05-10 06:42:40 +02:00
#if M91x_USE(Z2)
tmc_report_otpw(stepperZ2, TMC_Z2);
#endif
2018-07-25 02:50:49 +02:00
#if M91x_USE_E(0)
2018-03-07 04:03:57 +01:00
tmc_report_otpw(stepperE0, TMC_E0);
2017-12-15 22:02:39 +01:00
#endif
2018-05-12 14:51:00 +02:00
#if M91x_USE_E(1)
tmc_report_otpw(stepperE1, TMC_E1);
#endif
2018-05-12 14:51:00 +02:00
#if M91x_USE_E(2)
tmc_report_otpw(stepperE2, TMC_E2);
#endif
2018-05-12 14:51:00 +02:00
#if M91x_USE_E(3)
tmc_report_otpw(stepperE3, TMC_E3);
#endif
2018-05-12 14:51:00 +02:00
#if M91x_USE_E(4)
tmc_report_otpw(stepperE4, TMC_E4);
#endif
}
2017-04-15 05:44:08 +02:00
/**
2017-12-15 22:02:39 +01:00
* M912: Clear TMC stepper driver overtemperature pre-warn flag held by the library
* Specify one or more axes with X, Y, Z, X1, Y1, Z1, X2, Y2, Z2, and E[index].
* If no axes are given, clear all.
*
* Examples:
* M912 X ; clear X and X2
* M912 X1 ; clear X1 only
* M912 X2 ; clear X2 only
* M912 X E ; clear X, X2, and all E
* M912 E1 ; clear E1 only
2017-04-15 05:44:08 +02:00
*/
inline void gcode_M912() {
2018-05-10 06:42:40 +02:00
const bool hasX = parser.seen(axis_codes[X_AXIS]),
hasY = parser.seen(axis_codes[Y_AXIS]),
hasZ = parser.seen(axis_codes[Z_AXIS]),
2018-09-09 04:17:02 +02:00
hasE = parser.seen(axis_codes[E_CART]),
hasNone = !hasX && !hasY && !hasZ && !hasE;
2017-04-15 05:44:08 +02:00
2018-07-25 02:50:49 +02:00
#if M91x_USE(X) || M91x_USE(X2)
2018-05-10 06:42:40 +02:00
const uint8_t xval = parser.byteval(axis_codes[X_AXIS], 10);
2018-07-25 02:50:49 +02:00
#if M91x_USE(X)
2018-05-10 06:42:40 +02:00
if (hasNone || xval == 1 || (hasX && xval == 10)) tmc_clear_otpw(stepperX, TMC_X);
2017-12-15 22:02:39 +01:00
#endif
2018-05-10 06:42:40 +02:00
#if M91x_USE(X2)
if (hasNone || xval == 2 || (hasX && xval == 10)) tmc_clear_otpw(stepperX2, TMC_X2);
2017-12-15 22:02:39 +01:00
#endif
#endif
2017-12-15 22:02:39 +01:00
2018-07-25 02:50:49 +02:00
#if M91x_USE(Y) || M91x_USE(Y2)
2018-05-10 06:42:40 +02:00
const uint8_t yval = parser.byteval(axis_codes[Y_AXIS], 10);
2018-07-25 02:50:49 +02:00
#if M91x_USE(Y)
2018-05-10 06:42:40 +02:00
if (hasNone || yval == 1 || (hasY && yval == 10)) tmc_clear_otpw(stepperY, TMC_Y);
2017-04-15 05:44:08 +02:00
#endif
2018-05-10 06:42:40 +02:00
#if M91x_USE(Y2)
if (hasNone || yval == 2 || (hasY && yval == 10)) tmc_clear_otpw(stepperY2, TMC_Y2);
2017-04-15 05:44:08 +02:00
#endif
#endif
2017-12-15 22:02:39 +01:00
2018-07-25 02:50:49 +02:00
#if M91x_USE(Z) || M91x_USE(Z2)
2018-05-10 06:42:40 +02:00
const uint8_t zval = parser.byteval(axis_codes[Z_AXIS], 10);
2018-07-25 02:50:49 +02:00
#if M91x_USE(Z)
2018-05-10 06:42:40 +02:00
if (hasNone || zval == 1 || (hasZ && zval == 10)) tmc_clear_otpw(stepperZ, TMC_Z);
2017-04-15 05:44:08 +02:00
#endif
2018-05-10 06:42:40 +02:00
#if M91x_USE(Z2)
if (hasNone || zval == 2 || (hasZ && zval == 10)) tmc_clear_otpw(stepperZ2, TMC_Z2);
2017-12-15 22:02:39 +01:00
#endif
#endif
2017-12-15 22:02:39 +01:00
2018-09-09 04:17:02 +02:00
// TODO: If this is a Hangprinter, E_AXIS will not correspond to E0, E1, etc in this way
2018-07-25 02:50:49 +02:00
#if M91x_USE_E(0) || M91x_USE_E(1) || M91x_USE_E(2) || M91x_USE_E(3) || M91x_USE_E(4)
2018-05-12 14:51:00 +02:00
const uint8_t eval = parser.byteval(axis_codes[E_AXIS], 10);
2018-07-25 02:50:49 +02:00
#if M91x_USE_E(0)
2018-05-12 14:51:00 +02:00
if (hasNone || eval == 0 || (hasE && eval == 10)) tmc_clear_otpw(stepperE0, TMC_E0);
2017-12-15 22:02:39 +01:00
#endif
2018-05-12 14:51:00 +02:00
#if M91x_USE_E(1)
if (hasNone || eval == 1 || (hasE && eval == 10)) tmc_clear_otpw(stepperE1, TMC_E1);
2017-12-15 22:02:39 +01:00
#endif
2018-05-12 14:51:00 +02:00
#if M91x_USE_E(2)
if (hasNone || eval == 2 || (hasE && eval == 10)) tmc_clear_otpw(stepperE2, TMC_E2);
2017-12-15 22:02:39 +01:00
#endif
2018-05-12 14:51:00 +02:00
#if M91x_USE_E(3)
if (hasNone || eval == 3 || (hasE && eval == 10)) tmc_clear_otpw(stepperE3, TMC_E3);
2017-12-15 22:02:39 +01:00
#endif
2018-05-12 14:51:00 +02:00
#if M91x_USE_E(4)
if (hasNone || eval == 4 || (hasE && eval == 10)) tmc_clear_otpw(stepperE4, TMC_E4);
2017-04-15 05:44:08 +02:00
#endif
#endif
}
2017-04-15 05:44:08 +02:00
/**
* M913: Set HYBRID_THRESHOLD speed.
*/
#if ENABLED(HYBRID_THRESHOLD)
inline void gcode_M913() {
2018-05-13 10:25:31 +02:00
#define TMC_SAY_PWMTHRS(A,Q) tmc_get_pwmthrs(stepper##Q, TMC_##Q, planner.axis_steps_per_mm[_AXIS(A)])
#define TMC_SET_PWMTHRS(A,Q) tmc_set_pwmthrs(stepper##Q, value, planner.axis_steps_per_mm[_AXIS(A)])
#define TMC_SAY_PWMTHRS_E(E) do{ const uint8_t extruder = E; tmc_get_pwmthrs(stepperE##E, TMC_E##E, planner.axis_steps_per_mm[E_AXIS_N]); }while(0)
2018-05-10 06:42:40 +02:00
#define TMC_SET_PWMTHRS_E(E) do{ const uint8_t extruder = E; tmc_set_pwmthrs(stepperE##E, value, planner.axis_steps_per_mm[E_AXIS_N]); }while(0)
2018-01-10 02:05:37 +01:00
bool report = true;
const uint8_t index = parser.byteval('I');
LOOP_XYZE(i) if (int32_t value = parser.longval(axis_codes[i])) {
report = false;
switch (i) {
case X_AXIS:
2018-07-25 02:50:49 +02:00
#if AXIS_HAS_STEALTHCHOP(X)
if (index < 2) TMC_SET_PWMTHRS(X,X);
#endif
2018-07-25 02:50:49 +02:00
#if AXIS_HAS_STEALTHCHOP(X2)
if (!(index & 1)) TMC_SET_PWMTHRS(X,X2);
#endif
break;
case Y_AXIS:
2018-07-25 02:50:49 +02:00
#if AXIS_HAS_STEALTHCHOP(Y)
if (index < 2) TMC_SET_PWMTHRS(Y,Y);
#endif
2018-07-25 02:50:49 +02:00
#if AXIS_HAS_STEALTHCHOP(Y2)
if (!(index & 1)) TMC_SET_PWMTHRS(Y,Y2);
#endif
break;
case Z_AXIS:
2018-07-25 02:50:49 +02:00
#if AXIS_HAS_STEALTHCHOP(Z)
if (index < 2) TMC_SET_PWMTHRS(Z,Z);
#endif
2018-07-25 02:50:49 +02:00
#if AXIS_HAS_STEALTHCHOP(Z2)
if (!(index & 1)) TMC_SET_PWMTHRS(Z,Z2);
#endif
break;
2018-09-09 04:17:02 +02:00
case E_CART: {
if (get_target_extruder_from_command(913)) return;
switch (target_extruder) {
2018-07-25 02:50:49 +02:00
#if AXIS_HAS_STEALTHCHOP(E0)
case 0: TMC_SET_PWMTHRS_E(0); break;
#endif
2018-07-25 02:50:49 +02:00
#if E_STEPPERS > 1 && AXIS_HAS_STEALTHCHOP(E1)
case 1: TMC_SET_PWMTHRS_E(1); break;
#endif
2018-07-25 02:50:49 +02:00
#if E_STEPPERS > 2 && AXIS_HAS_STEALTHCHOP(E2)
case 2: TMC_SET_PWMTHRS_E(2); break;
#endif
2018-07-25 02:50:49 +02:00
#if E_STEPPERS > 3 && AXIS_HAS_STEALTHCHOP(E3)
case 3: TMC_SET_PWMTHRS_E(3); break;
#endif
2018-07-25 02:50:49 +02:00
#if E_STEPPERS > 4 && AXIS_HAS_STEALTHCHOP(E4)
case 4: TMC_SET_PWMTHRS_E(4); break;
#endif
}
} break;
}
}
2017-04-15 05:44:08 +02:00
if (report) {
2018-07-25 02:50:49 +02:00
#if AXIS_HAS_STEALTHCHOP(X)
TMC_SAY_PWMTHRS(X,X);
#endif
2018-07-25 02:50:49 +02:00
#if AXIS_HAS_STEALTHCHOP(X2)
TMC_SAY_PWMTHRS(X,X2);
#endif
2018-07-25 02:50:49 +02:00
#if AXIS_HAS_STEALTHCHOP(Y)
TMC_SAY_PWMTHRS(Y,Y);
#endif
2018-07-25 02:50:49 +02:00
#if AXIS_HAS_STEALTHCHOP(Y2)
TMC_SAY_PWMTHRS(Y,Y2);
#endif
2018-07-25 02:50:49 +02:00
#if AXIS_HAS_STEALTHCHOP(Z)
TMC_SAY_PWMTHRS(Z,Z);
#endif
2018-07-25 02:50:49 +02:00
#if AXIS_HAS_STEALTHCHOP(Z2)
TMC_SAY_PWMTHRS(Z,Z2);
#endif
2018-07-25 02:50:49 +02:00
#if AXIS_HAS_STEALTHCHOP(E0)
TMC_SAY_PWMTHRS_E(0);
#endif
2018-07-25 02:50:49 +02:00
#if E_STEPPERS > 1 && AXIS_HAS_STEALTHCHOP(E1)
TMC_SAY_PWMTHRS_E(1);
#endif
2018-07-25 02:50:49 +02:00
#if E_STEPPERS > 2 && AXIS_HAS_STEALTHCHOP(E2)
TMC_SAY_PWMTHRS_E(2);
#endif
2018-07-25 02:50:49 +02:00
#if E_STEPPERS > 3 && AXIS_HAS_STEALTHCHOP(E3)
TMC_SAY_PWMTHRS_E(3);
#endif
2018-07-25 02:50:49 +02:00
#if E_STEPPERS > 4 && AXIS_HAS_STEALTHCHOP(E4)
TMC_SAY_PWMTHRS_E(4);
#endif
}
2017-04-15 05:44:08 +02:00
}
#endif // HYBRID_THRESHOLD
/**
* M914: Set SENSORLESS_HOMING sensitivity.
*/
#if ENABLED(SENSORLESS_HOMING)
inline void gcode_M914() {
#define TMC_SAY_SGT(Q) tmc_get_sgt(stepper##Q, TMC_##Q)
2018-05-10 06:42:40 +02:00
#define TMC_SET_SGT(Q) tmc_set_sgt(stepper##Q, value)
2018-01-10 02:05:37 +01:00
bool report = true;
const uint8_t index = parser.byteval('I');
LOOP_XYZ(i) if (parser.seen(axis_codes[i])) {
const int8_t value = (int8_t)constrain(parser.value_int(), -64, 63);
report = false;
switch (i) {
#if X_SENSORLESS
case X_AXIS:
2018-07-25 02:50:49 +02:00
#if AXIS_HAS_STALLGUARD(X)
if (index < 2) TMC_SET_SGT(X);
#endif
2018-07-25 02:50:49 +02:00
#if AXIS_HAS_STALLGUARD(X2)
if (!(index & 1)) TMC_SET_SGT(X2);
#endif
break;
#endif
#if Y_SENSORLESS
case Y_AXIS:
2018-07-25 02:50:49 +02:00
#if AXIS_HAS_STALLGUARD(Y)
if (index < 2) TMC_SET_SGT(Y);
#endif
2018-07-25 02:50:49 +02:00
#if AXIS_HAS_STALLGUARD(Y2)
if (!(index & 1)) TMC_SET_SGT(Y2);
#endif
break;
#endif
#if Z_SENSORLESS
case Z_AXIS:
2018-07-25 02:50:49 +02:00
#if AXIS_HAS_STALLGUARD(Z)
if (index < 2) TMC_SET_SGT(Z);
#endif
2018-07-25 02:50:49 +02:00
#if AXIS_HAS_STALLGUARD(Z2)
if (!(index & 1)) TMC_SET_SGT(Z2);
#endif
break;
#endif
}
}
if (report) {
#if X_SENSORLESS
2018-07-25 02:50:49 +02:00
#if AXIS_HAS_STALLGUARD(X)
TMC_SAY_SGT(X);
#endif
2018-07-25 02:50:49 +02:00
#if AXIS_HAS_STALLGUARD(X2)
TMC_SAY_SGT(X2);
#endif
#endif
#if Y_SENSORLESS
2018-07-25 02:50:49 +02:00
#if AXIS_HAS_STALLGUARD(Y)
TMC_SAY_SGT(Y);
#endif
2018-07-25 02:50:49 +02:00
#if AXIS_HAS_STALLGUARD(Y2)
TMC_SAY_SGT(Y2);
#endif
#endif
#if Z_SENSORLESS
2018-07-25 02:50:49 +02:00
#if AXIS_HAS_STALLGUARD(Z)
TMC_SAY_SGT(Z);
#endif
2018-07-25 02:50:49 +02:00
#if AXIS_HAS_STALLGUARD(Z2)
TMC_SAY_SGT(Z2);
#endif
#endif
}
2017-04-15 05:44:08 +02:00
}
#endif // SENSORLESS_HOMING
2017-12-15 22:02:39 +01:00
/**
* TMC Z axis calibration routine
*/
2018-01-10 02:05:37 +01:00
#if ENABLED(TMC_Z_CALIBRATION)
2017-12-15 22:02:39 +01:00
inline void gcode_M915() {
2018-03-21 11:13:12 +01:00
const uint16_t _rms = parser.seenval('S') ? parser.value_int() : CALIBRATION_CURRENT,
_z = parser.seenval('Z') ? parser.value_linear_units() : CALIBRATION_EXTRA_HEIGHT;
2017-12-15 22:02:39 +01:00
2018-06-12 04:42:39 +02:00
if (!TEST(axis_known_position, Z_AXIS)) {
2017-12-15 22:02:39 +01:00
SERIAL_ECHOLNPGM("\nPlease home Z axis first");
return;
}
2018-07-25 02:50:49 +02:00
#if AXIS_IS_TMC(Z)
2018-03-21 11:13:12 +01:00
const uint16_t Z_current_1 = stepperZ.getCurrent();
2018-01-10 02:05:37 +01:00
stepperZ.setCurrent(_rms, R_SENSE, HOLD_MULTIPLIER);
#endif
2018-07-25 02:50:49 +02:00
#if AXIS_IS_TMC(Z2)
2018-03-21 11:13:12 +01:00
const uint16_t Z2_current_1 = stepperZ2.getCurrent();
2018-01-10 02:05:37 +01:00
stepperZ2.setCurrent(_rms, R_SENSE, HOLD_MULTIPLIER);
#endif
2017-12-15 22:02:39 +01:00
SERIAL_ECHOPAIR("\nCalibration current: Z", _rms);
soft_endstops_enabled = false;
do_blocking_move_to_z(Z_MAX_POS+_z);
2018-07-25 02:50:49 +02:00
#if AXIS_IS_TMC(Z)
2018-01-10 02:05:37 +01:00
stepperZ.setCurrent(Z_current_1, R_SENSE, HOLD_MULTIPLIER);
#endif
2018-07-25 02:50:49 +02:00
#if AXIS_IS_TMC(Z2)
2018-01-10 02:05:37 +01:00
stepperZ2.setCurrent(Z2_current_1, R_SENSE, HOLD_MULTIPLIER);
#endif
2017-12-15 22:02:39 +01:00
do_blocking_move_to_z(Z_MAX_POS);
soft_endstops_enabled = true;
2018-01-10 02:05:37 +01:00
SERIAL_ECHOLNPGM("\nHoming Z due to lost steps");
enqueue_and_echo_commands_P(PSTR("G28 Z"));
2017-12-15 22:02:39 +01:00
}
#endif
#endif // HAS_TRINAMIC
2016-05-04 18:53:17 +02:00
/**
* M907: Set digital trimpot motor current using axis codes X, Y, Z, E, B, S
*/
inline void gcode_M907() {
#if HAS_DIGIPOTSS
2017-06-25 05:23:45 +02:00
2017-05-20 10:03:08 +02:00
LOOP_XYZE(i) if (parser.seen(axis_codes[i])) stepper.digipot_current(i, parser.value_int());
if (parser.seen('B')) stepper.digipot_current(4, parser.value_int());
if (parser.seen('S')) for (uint8_t i = 0; i <= 4; i++) stepper.digipot_current(i, parser.value_int());
2017-06-25 05:23:45 +02:00
2016-09-25 13:32:58 +02:00
#elif HAS_MOTOR_CURRENT_PWM
2017-06-25 05:23:45 +02:00
2016-09-25 13:32:58 +02:00
#if PIN_EXISTS(MOTOR_CURRENT_PWM_XY)
2017-05-20 10:03:08 +02:00
if (parser.seen('X')) stepper.digipot_current(0, parser.value_int());
2016-09-25 13:32:58 +02:00
#endif
#if PIN_EXISTS(MOTOR_CURRENT_PWM_Z)
2017-05-20 10:03:08 +02:00
if (parser.seen('Z')) stepper.digipot_current(1, parser.value_int());
2016-09-25 13:32:58 +02:00
#endif
#if PIN_EXISTS(MOTOR_CURRENT_PWM_E)
2017-05-20 10:03:08 +02:00
if (parser.seen('E')) stepper.digipot_current(2, parser.value_int());
2016-09-25 13:32:58 +02:00
#endif
2017-06-25 05:23:45 +02:00
#endif
2017-06-25 05:23:45 +02:00
#if ENABLED(DIGIPOT_I2C)
// this one uses actual amps in floating point
2017-05-20 10:03:08 +02:00
LOOP_XYZE(i) if (parser.seen(axis_codes[i])) digipot_i2c_set_current(i, parser.value_float());
// for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
2017-05-20 10:03:08 +02:00
for (uint8_t i = NUM_AXIS; i < DIGIPOT_I2C_NUM_CHANNELS; i++) if (parser.seen('B' + i - (NUM_AXIS))) digipot_i2c_set_current(i, parser.value_float());
#endif
2017-06-25 05:23:45 +02:00
#if ENABLED(DAC_STEPPER_CURRENT)
2017-05-20 10:03:08 +02:00
if (parser.seen('S')) {
const float dac_percent = parser.value_float();
for (uint8_t i = 0; i <= 4; i++) dac_current_percent(i, dac_percent);
}
2017-05-20 10:03:08 +02:00
LOOP_XYZE(i) if (parser.seen(axis_codes[i])) dac_current_percent(i, parser.value_float());
#endif
}
#if HAS_DIGIPOTSS || ENABLED(DAC_STEPPER_CURRENT)
/**
* M908: Control digital trimpot directly (M908 P<pin> S<current>)
*/
inline void gcode_M908() {
#if HAS_DIGIPOTSS
stepper.digitalPotWrite(
parser.intval('P'),
parser.intval('S')
);
#endif
#ifdef DAC_STEPPER_CURRENT
dac_current_raw(
parser.byteval('P', -1),
parser.ushortval('S', 0)
);
#endif
}
#if ENABLED(DAC_STEPPER_CURRENT) // As with Printrbot RevF
inline void gcode_M909() { dac_print_values(); }
inline void gcode_M910() { dac_commit_eeprom(); }
#endif
#endif // HAS_DIGIPOTSS || DAC_STEPPER_CURRENT
2015-04-04 00:31:35 +02:00
#if HAS_MICROSTEPS
// M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
inline void gcode_M350() {
2017-05-20 10:03:08 +02:00
if (parser.seen('S')) for (int i = 0; i <= 4; i++) stepper.microstep_mode(i, parser.value_byte());
LOOP_XYZE(i) if (parser.seen(axis_codes[i])) stepper.microstep_mode(i, parser.value_byte());
if (parser.seen('B')) stepper.microstep_mode(4, parser.value_byte());
stepper.microstep_readings();
2015-04-04 00:31:35 +02:00
}
2015-04-04 00:31:35 +02:00
/**
* M351: Toggle MS1 MS2 pins directly with axis codes X Y Z E B
* S# determines MS1 or MS2, X# sets the pin high/low.
*/
inline void gcode_M351() {
2017-06-27 06:31:45 +02:00
if (parser.seenval('S')) switch (parser.value_byte()) {
case 1:
2017-06-27 06:31:45 +02:00
LOOP_XYZE(i) if (parser.seenval(axis_codes[i])) stepper.microstep_ms(i, parser.value_byte(), -1);
if (parser.seenval('B')) stepper.microstep_ms(4, parser.value_byte(), -1);
break;
case 2:
2017-06-27 06:31:45 +02:00
LOOP_XYZE(i) if (parser.seenval(axis_codes[i])) stepper.microstep_ms(i, -1, parser.value_byte());
if (parser.seenval('B')) stepper.microstep_ms(4, -1, parser.value_byte());
break;
}
stepper.microstep_readings();
2015-04-04 00:31:35 +02:00
}
#endif // HAS_MICROSTEPS
#if HAS_CASE_LIGHT
#ifndef INVERT_CASE_LIGHT
#define INVERT_CASE_LIGHT false
#endif
2017-09-24 01:45:13 +02:00
uint8_t case_light_brightness; // LCD routine wants INT
bool case_light_on;
2016-11-28 06:51:51 +01:00
#if ENABLED(CASE_LIGHT_USE_NEOPIXEL)
LEDColor case_light_color =
#ifdef CASE_LIGHT_NEOPIXEL_COLOR
CASE_LIGHT_NEOPIXEL_COLOR
#else
{ 255, 255, 255, 255 }
#endif
;
#endif
2016-11-28 06:51:51 +01:00
void update_case_light() {
const uint8_t i = case_light_on ? case_light_brightness : 0, n10ct = INVERT_CASE_LIGHT ? 255 - i : i;
#if ENABLED(CASE_LIGHT_USE_NEOPIXEL)
leds.set_color(
MakeLEDColor(case_light_color.r, case_light_color.g, case_light_color.b, case_light_color.w, n10ct),
false
);
#else // !CASE_LIGHT_USE_NEOPIXEL
SET_OUTPUT(CASE_LIGHT_PIN);
if (USEABLE_HARDWARE_PWM(CASE_LIGHT_PIN))
analogWrite(CASE_LIGHT_PIN, n10ct);
else {
const bool s = case_light_on ? !INVERT_CASE_LIGHT : INVERT_CASE_LIGHT;
WRITE(CASE_LIGHT_PIN, s ? HIGH : LOW);
}
#endif // !CASE_LIGHT_USE_NEOPIXEL
2016-11-28 06:51:51 +01:00
}
#endif // HAS_CASE_LIGHT
/**
* M355: Turn case light on/off and set brightness
*
* P<byte> Set case light brightness (PWM pin required - ignored otherwise)
*
* S<bool> Set case light on/off
*
* When S turns on the light on a PWM pin then the current brightness level is used/restored
*
* M355 P200 S0 turns off the light & sets the brightness level
* M355 S1 turns on the light with a brightness of 200 (assuming a PWM pin)
*/
inline void gcode_M355() {
#if HAS_CASE_LIGHT
uint8_t args = 0;
2017-06-27 06:31:45 +02:00
if (parser.seenval('P')) ++args, case_light_brightness = parser.value_byte();
if (parser.seenval('S')) ++args, case_light_on = parser.value_bool();
if (args) update_case_light();
// always report case light status
2017-06-09 17:51:23 +02:00
SERIAL_ECHO_START();
if (!case_light_on) {
2018-01-24 03:51:37 +01:00
SERIAL_ECHOLNPGM("Case light: off");
}
else {
2018-01-24 03:51:37 +01:00
if (!USEABLE_HARDWARE_PWM(CASE_LIGHT_PIN)) SERIAL_ECHOLNPGM("Case light: on");
else SERIAL_ECHOLNPAIR("Case light: ", int(case_light_brightness));
}
#else
2017-06-09 17:51:23 +02:00
SERIAL_ERROR_START();
SERIAL_ERRORLNPGM(MSG_ERR_M355_NONE);
#endif // HAS_CASE_LIGHT
}
#if ENABLED(MIXING_EXTRUDER)
/**
* M163: Set a single mix factor for a mixing extruder
* This is called "weight" by some systems.
* The 'P' values must sum to 1.0 or must be followed by M164 to normalize them.
*
* S[index] The channel index to set
* P[float] The mix value
*/
inline void gcode_M163() {
const int mix_index = parser.intval('S');
if (mix_index < MIXING_STEPPERS)
mixing_factor[mix_index] = MAX(parser.floatval('P'), 0.0);
}
/**
* M164: Normalize and commit the mix.
* If 'S' is given store as a virtual tool. (Requires MIXING_VIRTUAL_TOOLS > 1)
*
* S[index] The virtual tool to store
*/
inline void gcode_M164() {
normalize_mix();
#if MIXING_VIRTUAL_TOOLS > 1
const int tool_index = parser.intval('S', -1);
if (WITHIN(tool_index, 0, MIXING_VIRTUAL_TOOLS - 1)) {
for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
mixing_virtual_tool_mix[tool_index][i] = mixing_factor[i];
}
#endif
}
#if ENABLED(DIRECT_MIXING_IN_G1)
/**
* M165: Set multiple mix factors for a mixing extruder.
* Factors that are left out will be set to 0.
* All factors should sum to 1.0, but they will be normalized regardless.
*
* A[factor] Mix factor for extruder stepper 1
* B[factor] Mix factor for extruder stepper 2
* C[factor] Mix factor for extruder stepper 3
* D[factor] Mix factor for extruder stepper 4
* H[factor] Mix factor for extruder stepper 5
* I[factor] Mix factor for extruder stepper 6
*/
inline void gcode_M165() { gcode_get_mix(); }
#endif
#endif // MIXING_EXTRUDER
/**
* M999: Restart after being stopped
2016-05-19 01:13:33 +02:00
*
* Default behaviour is to flush the serial buffer and request
* a resend to the host starting on the last N line received.
*
* Sending "M999 S1" will resume printing without flushing the
* existing command buffer.
*
*/
inline void gcode_M999() {
2015-04-08 09:56:19 +02:00
Running = true;
lcd_reset_alert_level();
2016-05-19 01:13:33 +02:00
if (parser.boolval('S')) return;
2016-05-19 01:13:33 +02:00
// gcode_LastN = Stopped_gcode_LastN;
flush_and_request_resend();
}
#if DO_SWITCH_EXTRUDER
2017-06-19 23:54:37 +02:00
#if EXTRUDERS > 3
#define REQ_ANGLES 4
#define _SERVO_NR (e < 2 ? SWITCHING_EXTRUDER_SERVO_NR : SWITCHING_EXTRUDER_E23_SERVO_NR)
#else
#define REQ_ANGLES 2
#define _SERVO_NR SWITCHING_EXTRUDER_SERVO_NR
#endif
inline void move_extruder_servo(const uint8_t e) {
constexpr int16_t angles[] = SWITCHING_EXTRUDER_SERVO_ANGLES;
static_assert(COUNT(angles) == REQ_ANGLES, "SWITCHING_EXTRUDER_SERVO_ANGLES needs " STRINGIFY(REQ_ANGLES) " angles.");
planner.synchronize();
2017-06-19 23:54:37 +02:00
#if EXTRUDERS & 1
if (e < EXTRUDERS - 1)
#endif
{
MOVE_SERVO(_SERVO_NR, angles[e]);
safe_delay(500);
}
}
#endif // DO_SWITCH_EXTRUDER
#if ENABLED(SWITCHING_NOZZLE)
2017-06-19 23:54:37 +02:00
inline void move_nozzle_servo(const uint8_t e) {
const int16_t angles[2] = SWITCHING_NOZZLE_SERVO_ANGLES;
planner.synchronize();
MOVE_SERVO(SWITCHING_NOZZLE_SERVO_NR, angles[e]);
safe_delay(500);
}
#endif
2017-06-19 23:54:37 +02:00
inline void invalid_extruder_error(const uint8_t e) {
2017-06-09 17:51:23 +02:00
SERIAL_ECHO_START();
SERIAL_CHAR('T');
2017-03-20 07:42:41 +01:00
SERIAL_ECHO_F(e, DEC);
2017-06-19 23:54:37 +02:00
SERIAL_CHAR(' ');
2018-01-24 03:51:37 +01:00
SERIAL_ECHOLNPGM(MSG_INVALID_EXTRUDER);
}
#if ENABLED(PARKING_EXTRUDER)
#if ENABLED(PARKING_EXTRUDER_SOLENOIDS_INVERT)
#define PE_MAGNET_ON_STATE !PARKING_EXTRUDER_SOLENOIDS_PINS_ACTIVE
#else
#define PE_MAGNET_ON_STATE PARKING_EXTRUDER_SOLENOIDS_PINS_ACTIVE
#endif
void pe_set_magnet(const uint8_t extruder_num, const uint8_t state) {
switch (extruder_num) {
case 1: OUT_WRITE(SOL1_PIN, state); break;
default: OUT_WRITE(SOL0_PIN, state); break;
}
#if PARKING_EXTRUDER_SOLENOIDS_DELAY > 0
dwell(PARKING_EXTRUDER_SOLENOIDS_DELAY);
#endif
}
inline void pe_activate_magnet(const uint8_t extruder_num) { pe_set_magnet(extruder_num, PE_MAGNET_ON_STATE); }
inline void pe_deactivate_magnet(const uint8_t extruder_num) { pe_set_magnet(extruder_num, !PE_MAGNET_ON_STATE); }
#endif // PARKING_EXTRUDER
#if HAS_FANMUX
void fanmux_switch(const uint8_t e) {
WRITE(FANMUX0_PIN, TEST(e, 0) ? HIGH : LOW);
#if PIN_EXISTS(FANMUX1)
WRITE(FANMUX1_PIN, TEST(e, 1) ? HIGH : LOW);
#if PIN_EXISTS(FANMUX2)
WRITE(FANMUX2, TEST(e, 2) ? HIGH : LOW);
#endif
#endif
}
2017-11-05 00:09:01 +01:00
FORCE_INLINE void fanmux_init(void) {
SET_OUTPUT(FANMUX0_PIN);
#if PIN_EXISTS(FANMUX1)
SET_OUTPUT(FANMUX1_PIN);
#if PIN_EXISTS(FANMUX2)
SET_OUTPUT(FANMUX2_PIN);
#endif
#endif
fanmux_switch(0);
}
#endif // HAS_FANMUX
/**
* Tool Change functions
*/
#if ENABLED(MIXING_EXTRUDER) && MIXING_VIRTUAL_TOOLS > 1
inline void mixing_tool_change(const uint8_t tmp_extruder) {
2016-11-07 07:21:45 +01:00
if (tmp_extruder >= MIXING_VIRTUAL_TOOLS)
return invalid_extruder_error(tmp_extruder);
// T0-Tnnn: Switch virtual tool by changing the mix
for (uint8_t j = 0; j < MIXING_STEPPERS; j++)
mixing_factor[j] = mixing_virtual_tool_mix[tmp_extruder][j];
}
#endif // MIXING_EXTRUDER && MIXING_VIRTUAL_TOOLS > 1
2016-06-16 09:05:36 +02:00
#if ENABLED(DUAL_X_CARRIAGE)
inline void dualx_tool_change(const uint8_t tmp_extruder, bool &no_move) {
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) {
SERIAL_ECHOPGM("Dual X Carriage Mode ");
switch (dual_x_carriage_mode) {
case DXC_FULL_CONTROL_MODE: SERIAL_ECHOLNPGM("DXC_FULL_CONTROL_MODE"); break;
case DXC_AUTO_PARK_MODE: SERIAL_ECHOLNPGM("DXC_AUTO_PARK_MODE"); break;
case DXC_DUPLICATION_MODE: SERIAL_ECHOLNPGM("DXC_DUPLICATION_MODE"); break;
}
}
#endif
const float xhome = x_home_pos(active_extruder);
if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE
&& IsRunning()
&& (delayed_move_time || current_position[X_AXIS] != xhome)
) {
float raised_z = current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT;
#if ENABLED(MAX_SOFTWARE_ENDSTOPS)
NOMORE(raised_z, soft_endstop_max[Z_AXIS]);
#endif
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) {
SERIAL_ECHOLNPAIR("Raise to ", raised_z);
SERIAL_ECHOLNPAIR("MoveX to ", xhome);
SERIAL_ECHOLNPAIR("Lower to ", current_position[Z_AXIS]);
}
#endif
// Park old head: 1) raise 2) move to park position 3) lower
for (uint8_t i = 0; i < 3; i++)
planner.buffer_line(
i == 0 ? current_position[X_AXIS] : xhome,
current_position[Y_AXIS],
i == 2 ? current_position[Z_AXIS] : raised_z,
2018-09-09 04:17:02 +02:00
current_position[E_CART],
planner.max_feedrate_mm_s[i == 1 ? X_AXIS : Z_AXIS],
active_extruder
);
planner.synchronize();
}
// Apply Y & Z extruder offset (X offset is used as home pos with Dual X)
current_position[Y_AXIS] -= hotend_offset[Y_AXIS][active_extruder] - hotend_offset[Y_AXIS][tmp_extruder];
current_position[Z_AXIS] -= hotend_offset[Z_AXIS][active_extruder] - hotend_offset[Z_AXIS][tmp_extruder];
// Activate the new extruder ahead of calling set_axis_is_at_home!
active_extruder = tmp_extruder;
// This function resets the max/min values - the current position may be overwritten below.
set_axis_is_at_home(X_AXIS);
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) DEBUG_POS("New Extruder", current_position);
#endif
// Only when auto-parking are carriages safe to move
if (dual_x_carriage_mode != DXC_AUTO_PARK_MODE) no_move = true;
2015-04-04 06:43:30 +02:00
switch (dual_x_carriage_mode) {
case DXC_FULL_CONTROL_MODE:
// New current position is the position of the activated extruder
current_position[X_AXIS] = inactive_extruder_x_pos;
// Save the inactive extruder's position (from the old current_position)
inactive_extruder_x_pos = destination[X_AXIS];
break;
case DXC_AUTO_PARK_MODE:
// record raised toolhead position for use by unpark
COPY(raised_parked_position, current_position);
raised_parked_position[Z_AXIS] += TOOLCHANGE_UNPARK_ZLIFT;
#if ENABLED(MAX_SOFTWARE_ENDSTOPS)
NOMORE(raised_parked_position[Z_AXIS], soft_endstop_max[Z_AXIS]);
#endif
active_extruder_parked = true;
delayed_move_time = 0;
break;
case DXC_DUPLICATION_MODE:
// If the new extruder is the left one, set it "parked"
// This triggers the second extruder to move into the duplication position
active_extruder_parked = (active_extruder == 0);
current_position[X_AXIS] = active_extruder_parked ? inactive_extruder_x_pos : destination[X_AXIS] + duplicate_extruder_x_offset;
inactive_extruder_x_pos = destination[X_AXIS];
extruder_duplication_enabled = false;
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) {
SERIAL_ECHOLNPAIR("Set inactive_extruder_x_pos=", inactive_extruder_x_pos);
SERIAL_ECHOLNPGM("Clear extruder_duplication_enabled");
}
#endif
break;
}
2015-04-04 06:43:30 +02:00
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) {
SERIAL_ECHOLNPAIR("Active extruder parked: ", active_extruder_parked ? "yes" : "no");
DEBUG_POS("New extruder (parked)", current_position);
}
#endif
2016-11-07 07:21:45 +01:00
// No extra case for HAS_ABL in DUAL_X_CARRIAGE. Does that mean they don't work together?
}
#endif // DUAL_X_CARRIAGE
#if ENABLED(PARKING_EXTRUDER)
inline void parking_extruder_tool_change(const uint8_t tmp_extruder, bool no_move) {
constexpr float z_raise = PARKING_EXTRUDER_SECURITY_RAISE;
if (!no_move) {
2016-11-07 07:21:45 +01:00
const float parkingposx[] = PARKING_EXTRUDER_PARKING_X,
midpos = (parkingposx[0] + parkingposx[1]) * 0.5 + hotend_offset[X_AXIS][active_extruder],
grabpos = parkingposx[tmp_extruder] + hotend_offset[X_AXIS][active_extruder]
+ (tmp_extruder == 0 ? -(PARKING_EXTRUDER_GRAB_DISTANCE) : PARKING_EXTRUDER_GRAB_DISTANCE);
/**
* Steps:
* 1. Raise Z-Axis to give enough clearance
* 2. Move to park position of old extruder
* 3. Disengage magnetic field, wait for delay
* 4. Move near new extruder
* 5. Engage magnetic field for new extruder
* 6. Move to parking incl. offset of new extruder
* 7. Lower Z-Axis
*/
// STEP 1
#if ENABLED(DEBUG_LEVELING_FEATURE)
SERIAL_ECHOLNPGM("Starting Autopark");
if (DEBUGGING(LEVELING)) DEBUG_POS("current position:", current_position);
#endif
current_position[Z_AXIS] += z_raise;
#if ENABLED(DEBUG_LEVELING_FEATURE)
SERIAL_ECHOLNPGM("(1) Raise Z-Axis ");
if (DEBUGGING(LEVELING)) DEBUG_POS("Moving to Raised Z-Position", current_position);
#endif
planner.buffer_line_kinematic(current_position, planner.max_feedrate_mm_s[Z_AXIS], active_extruder);
planner.synchronize();
// STEP 2
current_position[X_AXIS] = parkingposx[active_extruder] + hotend_offset[X_AXIS][active_extruder];
#if ENABLED(DEBUG_LEVELING_FEATURE)
SERIAL_ECHOLNPAIR("(2) Park extruder ", active_extruder);
if (DEBUGGING(LEVELING)) DEBUG_POS("Moving ParkPos", current_position);
#endif
planner.buffer_line_kinematic(current_position, planner.max_feedrate_mm_s[X_AXIS], active_extruder);
planner.synchronize();
// STEP 3
#if ENABLED(DEBUG_LEVELING_FEATURE)
SERIAL_ECHOLNPGM("(3) Disengage magnet ");
#endif
pe_deactivate_magnet(active_extruder);
// STEP 4
#if ENABLED(DEBUG_LEVELING_FEATURE)
SERIAL_ECHOLNPGM("(4) Move to position near new extruder");
#endif
current_position[X_AXIS] += (active_extruder == 0 ? 10 : -10); // move 10mm away from parked extruder
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) DEBUG_POS("Moving away from parked extruder", current_position);
#endif
planner.buffer_line_kinematic(current_position, planner.max_feedrate_mm_s[X_AXIS], active_extruder);
planner.synchronize();
// STEP 5
#if ENABLED(DEBUG_LEVELING_FEATURE)
SERIAL_ECHOLNPGM("(5) Engage magnetic field");
#endif
#if ENABLED(PARKING_EXTRUDER_SOLENOIDS_INVERT)
pe_activate_magnet(active_extruder); //just save power for inverted magnets
#endif
pe_activate_magnet(tmp_extruder);
// STEP 6
current_position[X_AXIS] = grabpos + (tmp_extruder == 0 ? (+10) : (-10));
planner.buffer_line_kinematic(current_position, planner.max_feedrate_mm_s[X_AXIS], active_extruder);
current_position[X_AXIS] = grabpos;
#if ENABLED(DEBUG_LEVELING_FEATURE)
SERIAL_ECHOLNPAIR("(6) Unpark extruder ", tmp_extruder);
if (DEBUGGING(LEVELING)) DEBUG_POS("Move UnparkPos", current_position);
#endif
planner.buffer_line_kinematic(current_position, planner.max_feedrate_mm_s[X_AXIS]/2, active_extruder);
planner.synchronize();
// Step 7
current_position[X_AXIS] = midpos - hotend_offset[X_AXIS][tmp_extruder];
#if ENABLED(DEBUG_LEVELING_FEATURE)
SERIAL_ECHOLNPGM("(7) Move midway between hotends");
if (DEBUGGING(LEVELING)) DEBUG_POS("Move midway to new extruder", current_position);
#endif
planner.buffer_line_kinematic(current_position, planner.max_feedrate_mm_s[X_AXIS], active_extruder);
planner.synchronize();
#if ENABLED(DEBUG_LEVELING_FEATURE)
SERIAL_ECHOLNPGM("Autopark done.");
#endif
}
else { // nomove == true
// Only engage magnetic field for new extruder
pe_activate_magnet(tmp_extruder);
#if ENABLED(PARKING_EXTRUDER_SOLENOIDS_INVERT)
pe_activate_magnet(active_extruder); // Just save power for inverted magnets
#endif
}
current_position[Z_AXIS] += hotend_offset[Z_AXIS][active_extruder] - hotend_offset[Z_AXIS][tmp_extruder];
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) DEBUG_POS("Applying Z-offset", current_position);
#endif
}
#endif // PARKING_EXTRUDER
/**
* Perform a tool-change, which may result in moving the
* previous tool out of the way and the new tool into place.
*/
void tool_change(const uint8_t tmp_extruder, const float fr_mm_s/*=0.0*/, bool no_move/*=false*/) {
planner.synchronize();
#if HAS_LEVELING
// Set current position to the physical position
const bool leveling_was_active = planner.leveling_active;
set_bed_leveling_enabled(false);
#endif
#if ENABLED(MIXING_EXTRUDER) && MIXING_VIRTUAL_TOOLS > 1
mixing_tool_change(tmp_extruder);
2016-04-12 05:30:00 +02:00
#else // !MIXING_EXTRUDER || MIXING_VIRTUAL_TOOLS <= 1
if (tmp_extruder >= EXTRUDERS)
return invalid_extruder_error(tmp_extruder);
2016-04-28 04:35:55 +02:00
#if HOTENDS > 1
const float old_feedrate_mm_s = fr_mm_s > 0.0 ? fr_mm_s : feedrate_mm_s;
feedrate_mm_s = fr_mm_s > 0.0 ? fr_mm_s : XY_PROBE_FEEDRATE_MM_S;
if (tmp_extruder != active_extruder) {
if (!no_move && axis_unhomed_error()) {
no_move = true;
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("No move on toolchange");
#endif
}
#if ENABLED(DUAL_X_CARRIAGE)
#if HAS_SOFTWARE_ENDSTOPS
// Update the X software endstops early
active_extruder = tmp_extruder;
update_software_endstops(X_AXIS);
active_extruder = !tmp_extruder;
#endif
2016-04-28 04:35:55 +02:00
// Don't move the new extruder out of bounds
if (!WITHIN(current_position[X_AXIS], soft_endstop_min[X_AXIS], soft_endstop_max[X_AXIS]))
no_move = true;
2016-04-28 04:35:55 +02:00
if (!no_move) set_destination_from_current();
dualx_tool_change(tmp_extruder, no_move); // Can modify no_move
2016-06-11 21:59:44 +02:00
#else // !DUAL_X_CARRIAGE
set_destination_from_current();
#if ENABLED(PARKING_EXTRUDER)
parking_extruder_tool_change(tmp_extruder, no_move);
#endif
2016-06-11 21:59:44 +02:00
#if ENABLED(SWITCHING_NOZZLE)
// Always raise by at least 1 to avoid workpiece
const float zdiff = hotend_offset[Z_AXIS][active_extruder] - hotend_offset[Z_AXIS][tmp_extruder];
current_position[Z_AXIS] += (zdiff > 0.0 ? zdiff : 0.0) + 1;
2017-03-17 03:25:19 +01:00
planner.buffer_line_kinematic(current_position, planner.max_feedrate_mm_s[Z_AXIS], active_extruder);
2017-06-19 23:54:37 +02:00
move_nozzle_servo(tmp_extruder);
#endif
const float xdiff = hotend_offset[X_AXIS][tmp_extruder] - hotend_offset[X_AXIS][active_extruder],
ydiff = hotend_offset[Y_AXIS][tmp_extruder] - hotend_offset[Y_AXIS][active_extruder];
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) {
SERIAL_ECHOPAIR("Offset Tool XY by { ", xdiff);
SERIAL_ECHOPAIR(", ", ydiff);
SERIAL_ECHOLNPGM(" }");
}
#endif
2016-04-28 04:35:55 +02:00
// The newly-selected extruder XY is actually at...
current_position[X_AXIS] += xdiff;
current_position[Y_AXIS] += ydiff;
2016-04-28 04:35:55 +02:00
// Set the new active extruder
active_extruder = tmp_extruder;
2016-04-28 04:35:55 +02:00
#endif // !DUAL_X_CARRIAGE
2016-04-28 04:35:55 +02:00
#if ENABLED(SWITCHING_NOZZLE)
// The newly-selected extruder Z is actually at...
current_position[Z_AXIS] -= zdiff;
#endif
// Tell the planner the new "current position"
SYNC_PLAN_POSITION_KINEMATIC();
2016-04-12 05:30:00 +02:00
#if ENABLED(DELTA)
//LOOP_XYZ(i) update_software_endstops(i); // or modify the constrain function
const bool safe_to_move = current_position[Z_AXIS] < delta_clip_start_height - 1;
#else
constexpr bool safe_to_move = true;
#endif
// Raise, move, and lower again
if (safe_to_move && !no_move && IsRunning()) {
#if DISABLED(SWITCHING_NOZZLE)
// Do a small lift to avoid the workpiece in the move back (below)
current_position[Z_AXIS] += 1.0;
planner.buffer_line_kinematic(current_position, planner.max_feedrate_mm_s[Z_AXIS], active_extruder);
#endif
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) DEBUG_POS("Move back", destination);
#endif
// Move back to the original (or tweaked) position
do_blocking_move_to(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS]);
#if ENABLED(DUAL_X_CARRIAGE)
active_extruder_parked = false;
#endif
}
#if ENABLED(SWITCHING_NOZZLE)
else {
// Move back down. (Including when the new tool is higher.)
do_blocking_move_to_z(destination[Z_AXIS], planner.max_feedrate_mm_s[Z_AXIS]);
}
2017-03-17 03:25:19 +01:00
#endif
} // (tmp_extruder != active_extruder)
2016-04-12 05:30:00 +02:00
planner.synchronize();
2016-06-16 09:05:36 +02:00
#if ENABLED(EXT_SOLENOID) && !ENABLED(PARKING_EXTRUDER)
disable_all_solenoids();
enable_solenoid_on_active_extruder();
2018-03-19 03:08:36 +01:00
#endif
feedrate_mm_s = old_feedrate_mm_s;
2016-06-16 09:05:36 +02:00
#if HAS_SOFTWARE_ENDSTOPS && ENABLED(DUAL_X_CARRIAGE)
update_software_endstops(X_AXIS);
#endif
#else // HOTENDS <= 1
UNUSED(fr_mm_s);
2016-07-22 17:08:56 +02:00
UNUSED(no_move);
2017-07-19 20:01:07 +02:00
#if ENABLED(MK2_MULTIPLEXER)
if (tmp_extruder >= E_STEPPERS)
return invalid_extruder_error(tmp_extruder);
select_multiplexed_stepper(tmp_extruder);
#endif
// Set the new active extruder
active_extruder = tmp_extruder;
#endif // HOTENDS <= 1
#if DO_SWITCH_EXTRUDER
planner.synchronize();
move_extruder_servo(active_extruder);
2017-07-19 20:01:07 +02:00
#endif
#if HAS_FANMUX
fanmux_switch(active_extruder);
#endif
2017-06-19 23:54:37 +02:00
#if HAS_LEVELING
// Restore leveling to re-establish the logical position
set_bed_leveling_enabled(leveling_was_active);
#endif
2017-06-09 17:51:23 +02:00
SERIAL_ECHO_START();
SERIAL_ECHOLNPAIR(MSG_ACTIVE_EXTRUDER, int(active_extruder));
2017-05-09 19:35:43 +02:00
#endif // !MIXING_EXTRUDER || MIXING_VIRTUAL_TOOLS <= 1
}
2016-07-20 04:37:31 +02:00
/**
* T0-T3: Switch tool, usually switching extruders
*
* F[units/min] Set the movement feedrate
* S1 Don't move the tool in XY after change
*/
2017-10-13 23:13:36 +02:00
inline void gcode_T(const uint8_t tmp_extruder) {
2016-07-20 04:37:31 +02:00
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) {
SERIAL_ECHOPAIR(">>> gcode_T(", tmp_extruder);
2016-10-02 08:48:17 +02:00
SERIAL_CHAR(')');
2017-06-09 17:51:23 +02:00
SERIAL_EOL();
2016-07-20 04:37:31 +02:00
DEBUG_POS("BEFORE", current_position);
}
#endif
#if HOTENDS == 1 || (ENABLED(MIXING_EXTRUDER) && MIXING_VIRTUAL_TOOLS > 1)
tool_change(tmp_extruder);
#elif HOTENDS > 1
tool_change(
tmp_extruder,
MMM_TO_MMS(parser.linearval('F')),
(tmp_extruder == active_extruder) || parser.boolval('S')
2016-07-20 04:37:31 +02:00
);
#endif
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) {
DEBUG_POS("AFTER", current_position);
SERIAL_ECHOLNPGM("<<< gcode_T");
}
#endif
}
/**
2017-11-01 19:08:46 +01:00
* Process the parsed command and dispatch it to its handler
*/
2017-11-01 19:08:46 +01:00
void process_parsed_command() {
KEEPALIVE_STATE(IN_HANDLER);
// Handle a known G, M, or T
2017-05-20 10:03:08 +02:00
switch (parser.command_letter) {
case 'G': switch (parser.codenum) {
2018-01-04 23:21:40 +01:00
case 0: case 1: gcode_G0_G1( // G0: Fast Move, G1: Linear Move
#if IS_SCARA
parser.codenum == 0
#endif
); break;
#if ENABLED(ARC_SUPPORT) && DISABLED(SCARA)
2018-01-04 23:21:40 +01:00
case 2: case 3: gcode_G2_G3(parser.codenum == 2); break; // G2: CW ARC, G3: CCW ARC
2015-05-23 02:31:38 +02:00
#endif
2018-01-04 23:21:40 +01:00
case 4: gcode_G4(); break; // G4: Dwell
#if ENABLED(BEZIER_CURVE_SUPPORT)
2018-01-04 23:21:40 +01:00
case 5: gcode_G5(); break; // G5: Cubic B_spline
#endif
2018-09-09 04:17:02 +02:00
#if ENABLED(UNREGISTERED_MOVE_SUPPORT)
case 6: gcode_G6(); break; // G6: Direct stepper move
#endif
#if ENABLED(FWRETRACT)
2018-01-04 23:21:40 +01:00
case 10: gcode_G10(); break; // G10: Retract
case 11: gcode_G11(); break; // G11: Prime
#endif
#if ENABLED(NOZZLE_CLEAN_FEATURE)
2018-01-04 23:21:40 +01:00
case 12: gcode_G12(); break; // G12: Clean Nozzle
#endif
#if ENABLED(CNC_WORKSPACE_PLANES)
2018-01-04 23:21:40 +01:00
case 17: gcode_G17(); break; // G17: Select Plane XY
case 18: gcode_G18(); break; // G18: Select Plane ZX
case 19: gcode_G19(); break; // G19: Select Plane YZ
#endif
#if ENABLED(INCH_MODE_SUPPORT)
2018-01-04 23:21:40 +01:00
case 20: gcode_G20(); break; // G20: Inch Units
case 21: gcode_G21(); break; // G21: Millimeter Units
#endif
#if ENABLED(G26_MESH_VALIDATION)
2018-01-04 23:21:40 +01:00
case 26: gcode_G26(); break; // G26: Mesh Validation Pattern
#endif
2017-03-18 16:15:54 +01:00
#if ENABLED(NOZZLE_PARK_FEATURE)
2018-01-04 23:21:40 +01:00
case 27: gcode_G27(); break; // G27: Park Nozzle
#endif
2018-01-04 23:21:40 +01:00
case 28: gcode_G28(false); break; // G28: Home one or more axes
2017-05-01 23:13:09 +02:00
#if HAS_LEVELING
2018-01-04 23:21:40 +01:00
case 29: gcode_G29(); break; // G29: Detailed Z probe
#endif
2015-03-21 14:50:47 +01:00
2016-06-21 00:50:51 +02:00
#if HAS_BED_PROBE
2018-01-04 23:21:40 +01:00
case 30: gcode_G30(); break; // G30: Single Z probe
#endif
2018-01-04 23:21:40 +01:00
#if ENABLED(Z_PROBE_SLED)
case 31: gcode_G31(); break; // G31: Dock sled
case 32: gcode_G32(); break; // G32: Undock sled
#endif
2017-07-03 17:06:23 +02:00
2017-11-08 09:43:29 +01:00
#if ENABLED(DELTA_AUTO_CALIBRATION)
2018-01-04 23:21:40 +01:00
case 33: gcode_G33(); break; // G33: Delta Auto-Calibration
#endif
2016-09-29 22:06:01 +02:00
#if ENABLED(G38_PROBE_TARGET)
2018-01-04 23:21:40 +01:00
case 38:
2017-07-06 21:06:39 +02:00
if (parser.subcode == 2 || parser.subcode == 3)
2018-01-04 23:21:40 +01:00
gcode_G38(parser.subcode == 2); // G38.2, G38.3: Probe towards object
break;
2016-09-26 08:30:34 +02:00
#endif
2017-10-14 03:47:44 +02:00
#if HAS_MESH
2018-01-04 23:21:40 +01:00
case 42: gcode_G42(); break; // G42: Move to mesh point
2017-05-21 22:47:09 +02:00
#endif
2018-01-04 23:21:40 +01:00
case 90: relative_mode = false; break; // G90: Absolute coordinates
case 91: relative_mode = true; break; // G91: Relative coordinates
case 92: gcode_G92(); break; // G92: Set Position
2018-09-09 04:17:02 +02:00
#if ENABLED(MECHADUINO_I2C_COMMANDS)
case 95: gcode_G95(); break; // G95: Set torque mode
case 96: gcode_G96(); break; // G96: Mark encoder reference point
#endif
2018-01-04 23:21:40 +01:00
2017-05-20 10:03:08 +02:00
#if ENABLED(DEBUG_GCODE_PARSER)
2018-01-04 23:21:40 +01:00
case 800: parser.debug(); break; // G800: GCode Parser Test for G
2017-05-20 10:03:08 +02:00
#endif
default: parser.unknown_command_error();
}
2015-05-17 14:00:09 +02:00
break;
2017-05-20 10:03:08 +02:00
case 'M': switch (parser.codenum) {
#if HAS_RESUME_CONTINUE
2018-01-04 23:21:40 +01:00
case 0: case 1: gcode_M0_M1(); break; // M0: Unconditional stop, M1: Conditional stop
#endif
2017-04-07 20:52:45 +02:00
#if ENABLED(SPINDLE_LASER_ENABLE)
2018-01-04 23:21:40 +01:00
case 3: gcode_M3_M4(true); break; // M3: Laser/CW-Spindle Power
case 4: gcode_M3_M4(false); break; // M4: Laser/CCW-Spindle Power
case 5: gcode_M5(); break; // M5: Laser/Spindle OFF
#endif
2018-01-04 23:21:40 +01:00
case 17: gcode_M17(); break; // M17: Enable all steppers
2015-05-18 02:36:32 +02:00
2018-01-04 23:21:40 +01:00
#if ENABLED(SDSUPPORT)
case 20: gcode_M20(); break; // M20: List SD Card
case 21: gcode_M21(); break; // M21: Init SD Card
case 22: gcode_M22(); break; // M22: Release SD Card
case 23: gcode_M23(); break; // M23: Select File
case 24: gcode_M24(); break; // M24: Start SD Print
case 25: gcode_M25(); break; // M25: Pause SD Print
case 26: gcode_M26(); break; // M26: Set SD Index
case 27: gcode_M27(); break; // M27: Get SD Status
case 28: gcode_M28(); break; // M28: Start SD Write
case 29: gcode_M29(); break; // M29: Stop SD Write
case 30: gcode_M30(); break; // M30: Delete File
case 32: gcode_M32(); break; // M32: Select file, Start SD Print
#if ENABLED(LONG_FILENAME_HOST_SUPPORT)
2018-01-04 23:21:40 +01:00
case 33: gcode_M33(); break; // M33: Report longname path
2016-10-05 11:39:01 +02:00
#endif
2017-02-09 14:02:25 +01:00
#if ENABLED(SDCARD_SORT_ALPHA) && ENABLED(SDSORT_GCODE)
2018-01-04 23:21:40 +01:00
case 34: gcode_M34(); break; // M34: Set SD card sorting options
#endif
case 928: gcode_M928(); break; // M928: Start SD write
2017-05-09 19:35:43 +02:00
#endif // SDSUPPORT
2018-01-04 23:21:40 +01:00
case 31: gcode_M31(); break; // M31: Report print job elapsed time
2016-10-05 12:50:22 +02:00
2018-01-04 23:21:40 +01:00
case 42: gcode_M42(); break; // M42: Change pin state
2016-10-05 12:50:22 +02:00
#if ENABLED(PINS_DEBUGGING)
2018-01-04 23:21:40 +01:00
case 43: gcode_M43(); break; // M43: Read/monitor pin and endstop states
2016-10-05 12:50:22 +02:00
#endif
#if ENABLED(Z_MIN_PROBE_REPEATABILITY_TEST)
2018-01-04 23:21:40 +01:00
case 48: gcode_M48(); break; // M48: Z probe repeatability test
#endif
#if ENABLED(G26_MESH_VALIDATION)
2018-01-04 23:21:40 +01:00
case 49: gcode_M49(); break; // M49: Toggle the G26 Debug Flag
#endif
2017-03-18 16:15:54 +01:00
2017-10-15 08:40:34 +02:00
#if ENABLED(ULTRA_LCD) && ENABLED(LCD_SET_PROGRESS_MANUALLY)
2018-01-04 23:21:40 +01:00
case 73: gcode_M73(); break; // M73: Set Print Progress %
2017-10-15 08:40:34 +02:00
#endif
2018-01-04 23:21:40 +01:00
case 75: gcode_M75(); break; // M75: Start Print Job Timer
case 76: gcode_M76(); break; // M76: Pause Print Job Timer
case 77: gcode_M77(); break; // M77: Stop Print Job Timer
2016-04-27 03:13:27 +02:00
#if ENABLED(PRINTCOUNTER)
2018-01-04 23:21:40 +01:00
case 78: gcode_M78(); break; // M78: Report Print Statistics
2016-04-27 03:13:27 +02:00
#endif
#if ENABLED(M100_FREE_MEMORY_WATCHER)
2018-01-04 23:21:40 +01:00
case 100: gcode_M100(); break; // M100: Free Memory Report
2015-07-06 02:42:13 +02:00
#endif
2018-01-04 23:21:40 +01:00
case 104: gcode_M104(); break; // M104: Set Hotend Temperature
case 110: gcode_M110(); break; // M110: Set Current Line Number
case 111: gcode_M111(); break; // M111: Set Debug Flags
#if DISABLED(EMERGENCY_PARSER)
2018-01-04 23:21:40 +01:00
case 108: gcode_M108(); break; // M108: Cancel Waiting
case 112: gcode_M112(); break; // M112: Emergency Stop
case 410: gcode_M410(); break; // M410: Quickstop. Abort all planned moves
#else
case 108: case 112: case 410: break; // Silently drop as handled by emergency parser
#endif
#if ENABLED(HOST_KEEPALIVE_FEATURE)
2018-01-04 23:21:40 +01:00
case 113: gcode_M113(); break; // M113: Set Host Keepalive Interval
#endif
2018-01-04 23:21:40 +01:00
case 105: gcode_M105(); KEEPALIVE_STATE(NOT_BUSY); return; // M105: Report Temperatures (and say "ok")
2018-03-07 07:50:02 +01:00
#if ENABLED(AUTO_REPORT_TEMPERATURES)
2018-01-04 23:21:40 +01:00
case 155: gcode_M155(); break; // M155: Set Temperature Auto-report Interval
#endif
2018-01-04 23:21:40 +01:00
case 109: gcode_M109(); break; // M109: Set Hotend Temperature. Wait for target.
#if HAS_HEATED_BED
case 140: gcode_M140(); break; // M140: Set Bed Temperature
2018-01-04 23:21:40 +01:00
case 190: gcode_M190(); break; // M190: Set Bed Temperature. Wait for target.
#endif
2016-03-06 03:27:45 +01:00
#if FAN_COUNT > 0
#if ENABLED(MPCNC)
case 7: // M7: Fan On
case 8: // M8: Flood Fan
#endif
2018-01-04 23:21:40 +01:00
case 106: gcode_M106(); break; // M106: Set Fan Speed
#if ENABLED(MPCNC)
case 9: // M9: Fan Off
#endif
2018-01-04 23:21:40 +01:00
case 107: gcode_M107(); break; // M107: Fan Off
#endif
2017-03-19 10:26:22 +01:00
#if ENABLED(PARK_HEAD_ON_PAUSE)
2018-01-04 23:21:40 +01:00
case 125: gcode_M125(); break; // M125: Park (for Filament Change)
2017-03-19 10:26:22 +01:00
#endif
#if ENABLED(BARICUDA)
2015-04-04 00:31:35 +02:00
#if HAS_HEATER_1
2018-01-04 23:21:40 +01:00
case 126: gcode_M126(); break; // M126: Valve 1 Open
case 127: gcode_M127(); break; // M127: Valve 1 Closed
#endif
2015-04-04 00:31:35 +02:00
#if HAS_HEATER_2
2018-01-04 23:21:40 +01:00
case 128: gcode_M128(); break; // M128: Valve 2 Open
case 129: gcode_M129(); break; // M129: Valve 2 Closed
#endif
#endif
2015-03-31 01:50:05 +02:00
#if HAS_POWER_SWITCH
2018-01-04 23:21:40 +01:00
case 80: gcode_M80(); break; // M80: Turn on Power Supply
#endif
case 81: gcode_M81(); break; // M81: Turn off Power and Power Supply
case 82: gcode_M82(); break; // M82: Disable Relative E-Axis
case 83: gcode_M83(); break; // M83: Set Relative E-Axis
case 18: case 84: gcode_M18_M84(); break; // M18/M84: Disable Steppers / Set Timeout
case 85: gcode_M85(); break; // M85: Set inactivity stepper shutdown timeout
case 92: gcode_M92(); break; // M92: Set steps-per-unit
case 114: gcode_M114(); break; // M114: Report Current Position
case 115: gcode_M115(); break; // M115: Capabilities Report
case 117: gcode_M117(); break; // M117: Set LCD message text
case 118: gcode_M118(); break; // M118: Print a message in the host console
case 119: gcode_M119(); break; // M119: Report Endstop states
case 120: gcode_M120(); break; // M120: Enable Endstops
case 121: gcode_M121(); break; // M121: Disable Endstops
#if ENABLED(ULTIPANEL)
2018-01-04 23:21:40 +01:00
case 145: gcode_M145(); break; // M145: Set material heatup parameters
#endif
#if ENABLED(TEMPERATURE_UNITS_SUPPORT)
2018-01-04 23:21:40 +01:00
case 149: gcode_M149(); break; // M149: Set Temperature Units, C F K
#endif
#if HAS_COLOR_LEDS
2018-01-04 23:21:40 +01:00
case 150: gcode_M150(); break; // M150: Set Status LED Color
#endif
#if ENABLED(MIXING_EXTRUDER)
2018-01-04 23:21:40 +01:00
case 163: gcode_M163(); break; // M163: Set Mixing Component
#if MIXING_VIRTUAL_TOOLS > 1
2018-01-04 23:21:40 +01:00
case 164: gcode_M164(); break; // M164: Save Current Mix
#endif
#if ENABLED(DIRECT_MIXING_IN_G1)
2018-01-04 23:21:40 +01:00
case 165: gcode_M165(); break; // M165: Set Multiple Mixing Components
#endif
#endif
#if DISABLED(NO_VOLUMETRICS)
2018-01-04 23:21:40 +01:00
case 200: gcode_M200(); break; // M200: Set Filament Diameter, Volumetric Extrusion
#endif
2018-01-04 23:21:40 +01:00
case 201: gcode_M201(); break; // M201: Set Max Printing Acceleration (units/sec^2)
#if 0
case 202: gcode_M202(); break; // M202: Not used for Sprinter/grbl gen6
#endif
2018-01-04 23:21:40 +01:00
case 203: gcode_M203(); break; // M203: Set Max Feedrate (units/sec)
case 204: gcode_M204(); break; // M204: Set Acceleration
case 205: gcode_M205(); break; // M205: Set Advanced settings
2017-03-05 01:01:33 +01:00
#if HAS_M206_COMMAND
2018-01-04 23:21:40 +01:00
case 206: gcode_M206(); break; // M206: Set Home Offsets
case 428: gcode_M428(); break; // M428: Set Home Offsets based on current position
2015-03-30 04:39:43 +02:00
#endif
#if ENABLED(FWRETRACT)
2018-01-04 23:21:40 +01:00
case 207: gcode_M207(); break; // M207: Set Retract Length, Feedrate, Z lift
case 208: gcode_M208(); break; // M208: Set Additional Prime Length and Feedrate
case 209:
if (MIN_AUTORETRACT <= MAX_AUTORETRACT) gcode_M209(); // M209: Turn Auto-Retract on/off
break;
2018-01-04 23:21:40 +01:00
#endif
2018-01-04 23:21:40 +01:00
case 211: gcode_M211(); break; // M211: Enable/Disable/Report Software Endstops
2016-05-27 02:43:20 +02:00
#if HOTENDS > 1
2018-01-04 23:21:40 +01:00
case 218: gcode_M218(); break; // M218: Set Tool Offset
#endif
2018-01-04 23:21:40 +01:00
case 220: gcode_M220(); break; // M220: Set Feedrate Percentage
case 221: gcode_M221(); break; // M221: Set Flow Percentage
case 226: gcode_M226(); break; // M226: Wait for Pin State
2018-01-04 23:21:40 +01:00
#if defined(CHDK) || HAS_PHOTOGRAPH
case 240: gcode_M240(); break; // M240: Trigger Camera
#endif
2018-01-04 23:21:40 +01:00
#if HAS_LCD_CONTRAST
case 250: gcode_M250(); break; // M250: Set LCD Contrast
#endif
#if ENABLED(EXPERIMENTAL_I2CBUS)
case 260: gcode_M260(); break; // M260: Send Data to i2c slave
case 261: gcode_M261(); break; // M261: Request Data from i2c slave
#endif
#if HAS_SERVOS
2018-01-04 23:21:40 +01:00
case 280: gcode_M280(); break; // M280: Set Servo Position
#endif
#if ENABLED(BABYSTEPPING)
2018-01-04 23:21:40 +01:00
case 290: gcode_M290(); break; // M290: Babystepping
#endif
#if HAS_BUZZER
2018-01-04 23:21:40 +01:00
case 300: gcode_M300(); break; // M300: Add Tone/Buzz to Queue
#endif
#if ENABLED(PIDTEMP)
2018-01-04 23:21:40 +01:00
case 301: gcode_M301(); break; // M301: Set Hotend PID parameters
#endif
2016-11-08 23:28:42 +01:00
2018-01-04 23:21:40 +01:00
#if ENABLED(PREVENT_COLD_EXTRUSION)
case 302: gcode_M302(); break; // M302: Set Minimum Extrusion Temp
#endif
2016-11-08 23:28:42 +01:00
2018-01-04 23:21:40 +01:00
case 303: gcode_M303(); break; // M303: PID Autotune
2016-11-08 23:28:42 +01:00
2018-01-04 23:21:40 +01:00
#if ENABLED(PIDTEMPBED)
case 304: gcode_M304(); break; // M304: Set Bed PID parameters
#endif
2016-11-08 23:28:42 +01:00
2018-01-04 23:21:40 +01:00
#if HAS_MICROSTEPS
case 350: gcode_M350(); break; // M350: Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
case 351: gcode_M351(); break; // M351: Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
#endif
2018-01-04 23:21:40 +01:00
case 355: gcode_M355(); break; // M355: Set Case Light brightness
2016-09-12 10:48:29 +02:00
#if ENABLED(MORGAN_SCARA)
2018-01-04 23:21:40 +01:00
case 360: if (gcode_M360()) return; break; // M360: SCARA Theta pos1
case 361: if (gcode_M361()) return; break; // M361: SCARA Theta pos2
case 362: if (gcode_M362()) return; break; // M362: SCARA Psi pos1
case 363: if (gcode_M363()) return; break; // M363: SCARA Psi pos2
case 364: if (gcode_M364()) return; break; // M364: SCARA Psi pos3 (90 deg to Theta)
#endif
2018-01-04 23:21:40 +01:00
case 400: gcode_M400(); break; // M400: Synchronize. Wait for moves to finish.
#if HAS_BED_PROBE
2018-01-04 23:21:40 +01:00
case 401: gcode_M401(); break; // M401: Deploy Probe
case 402: gcode_M402(); break; // M402: Stow Probe
#endif
#if ENABLED(FILAMENT_WIDTH_SENSOR)
2018-01-04 23:21:40 +01:00
case 404: gcode_M404(); break; // M404: Set/Report Nominal Filament Width
case 405: gcode_M405(); break; // M405: Enable Filament Width Sensor
case 406: gcode_M406(); break; // M406: Disable Filament Width Sensor
case 407: gcode_M407(); break; // M407: Report Measured Filament Width
#endif
2017-05-01 23:13:09 +02:00
#if HAS_LEVELING
2018-01-04 23:21:40 +01:00
case 420: gcode_M420(); break; // M420: Set Bed Leveling Enabled / Fade
2016-10-28 20:53:48 +02:00
#endif
2017-10-14 03:47:44 +02:00
#if HAS_MESH
2018-01-04 23:21:40 +01:00
case 421: gcode_M421(); break; // M421: Set a Mesh Z value
2017-03-05 01:01:33 +01:00
#endif
2015-04-30 03:26:16 +02:00
2018-01-04 23:21:40 +01:00
case 500: gcode_M500(); break; // M500: Store Settings in EEPROM
case 501: gcode_M501(); break; // M501: Read Settings from EEPROM
case 502: gcode_M502(); break; // M502: Revert Settings to defaults
#if DISABLED(DISABLE_M503)
2018-01-04 23:21:40 +01:00
case 503: gcode_M503(); break; // M503: Report Settings (in SRAM)
#endif
2018-01-03 00:22:48 +01:00
#if ENABLED(EEPROM_SETTINGS)
case 504: gcode_M504(); break; // M504: Validate EEPROM
#endif
#if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
2018-01-04 23:21:40 +01:00
case 540: gcode_M540(); break; // M540: Set Abort on Endstop Hit for SD Printing
2017-11-05 01:21:41 +01:00
#endif
#if ENABLED(ADVANCED_PAUSE_FEATURE)
2018-01-04 23:21:40 +01:00
case 600: gcode_M600(); break; // M600: Pause for Filament Change
case 603: gcode_M603(); break; // M603: Configure Filament Change
#endif
#if ENABLED(DUAL_X_CARRIAGE) || ENABLED(DUAL_NOZZLE_DUPLICATION_MODE)
2018-01-04 23:21:40 +01:00
case 605: gcode_M605(); break; // M605: Set Dual X Carriage movement mode
#endif
2018-09-09 04:17:02 +02:00
#if ENABLED(DELTA) || ENABLED(HANGPRINTER)
case 665: gcode_M665(); break; // M665: Delta / Hangprinter Configuration
2016-05-04 18:53:17 +02:00
#endif
2018-01-04 23:21:40 +01:00
#if ENABLED(DELTA) || ENABLED(X_DUAL_ENDSTOPS) || ENABLED(Y_DUAL_ENDSTOPS) || ENABLED(Z_DUAL_ENDSTOPS)
case 666: gcode_M666(); break; // M666: DELTA/Dual Endstop Adjustment
#endif
2018-01-04 23:21:40 +01:00
#if ENABLED(FILAMENT_LOAD_UNLOAD_GCODES)
case 701: gcode_M701(); break; // M701: Load Filament
case 702: gcode_M702(); break; // M702: Unload Filament
2016-05-04 18:53:17 +02:00
#endif
#if ENABLED(MAX7219_GCODE)
case 7219: gcode_M7219(); break; // M7219: Set LEDs, columns, and rows
#endif
2017-05-20 10:03:08 +02:00
#if ENABLED(DEBUG_GCODE_PARSER)
2018-01-04 23:21:40 +01:00
case 800: parser.debug(); break; // M800: GCode Parser Test for M
2017-05-20 10:03:08 +02:00
#endif
2018-01-04 23:21:40 +01:00
#if HAS_BED_PROBE
case 851: gcode_M851(); break; // M851: Set Z Probe Z Offset
#endif
2018-01-04 23:21:40 +01:00
#if ENABLED(SKEW_CORRECTION_GCODE)
case 852: gcode_M852(); break; // M852: Set Skew factors
#endif
2018-01-04 23:21:40 +01:00
#if ENABLED(I2C_POSITION_ENCODERS)
case 860: gcode_M860(); break; // M860: Report encoder module position
case 861: gcode_M861(); break; // M861: Report encoder module status
case 862: gcode_M862(); break; // M862: Perform axis test
case 863: gcode_M863(); break; // M863: Calibrate steps/mm
case 864: gcode_M864(); break; // M864: Change module address
case 865: gcode_M865(); break; // M865: Check module firmware version
case 866: gcode_M866(); break; // M866: Report axis error count
case 867: gcode_M867(); break; // M867: Toggle error correction
case 868: gcode_M868(); break; // M868: Set error correction threshold
case 869: gcode_M869(); break; // M869: Report axis error
#endif
2018-01-04 23:21:40 +01:00
#if ENABLED(LIN_ADVANCE)
case 900: gcode_M900(); break; // M900: Set Linear Advance K factor
#endif
2018-01-04 23:21:40 +01:00
case 907: gcode_M907(); break; // M907: Set Digital Trimpot Motor Current using axis codes.
2018-01-04 23:21:40 +01:00
#if HAS_DIGIPOTSS || ENABLED(DAC_STEPPER_CURRENT)
case 908: gcode_M908(); break; // M908: Direct Control Digital Trimpot
#if ENABLED(DAC_STEPPER_CURRENT)
case 909: gcode_M909(); break; // M909: Print Digipot/DAC current value (As with Printrbot RevF)
case 910: gcode_M910(); break; // M910: Commit Digipot/DAC value to External EEPROM (As with Printrbot RevF)
#endif
2018-01-04 23:21:40 +01:00
#endif
2018-07-25 02:50:49 +02:00
#if HAS_DRIVER(TMC2130) || HAS_DRIVER(TMC2208)
2017-12-15 22:02:39 +01:00
#if ENABLED(TMC_DEBUG)
2018-01-04 23:21:40 +01:00
case 122: gcode_M122(); break; // M122: Debug TMC steppers
2017-12-15 22:02:39 +01:00
#endif
2018-01-04 23:21:40 +01:00
case 906: gcode_M906(); break; // M906: Set motor current in milliamps using axis codes X, Y, Z, E
case 911: gcode_M911(); break; // M911: Report TMC prewarn triggered flags
case 912: gcode_M912(); break; // M911: Clear TMC prewarn triggered flags
2017-04-15 05:44:08 +02:00
#if ENABLED(HYBRID_THRESHOLD)
2018-01-04 23:21:40 +01:00
case 913: gcode_M913(); break; // M913: Set HYBRID_THRESHOLD speed.
2017-04-15 05:44:08 +02:00
#endif
#if ENABLED(SENSORLESS_HOMING)
2018-01-04 23:21:40 +01:00
case 914: gcode_M914(); break; // M914: Set SENSORLESS_HOMING sensitivity.
2017-04-15 05:44:08 +02:00
#endif
2018-01-10 02:05:37 +01:00
#if ENABLED(TMC_Z_CALIBRATION)
2018-01-04 23:21:40 +01:00
case 915: gcode_M915(); break; // M915: TMC Z axis calibration routine
2017-12-15 22:02:39 +01:00
#endif
#endif
2018-01-04 23:21:40 +01:00
case 999: gcode_M999(); break; // M999: Restart after being Stopped
default: parser.unknown_command_error();
}
2015-05-17 14:00:09 +02:00
break;
2018-01-04 23:21:40 +01:00
case 'T': gcode_T(parser.codenum); break; // T: Tool Select
2017-05-20 10:03:08 +02:00
default: parser.unknown_command_error();
}
KEEPALIVE_STATE(NOT_BUSY);
ok_to_send();
}
2017-11-01 19:08:46 +01:00
void process_next_command() {
char * const current_command = command_queue[cmd_queue_index_r];
if (DEBUGGING(ECHO)) {
SERIAL_ECHO_START();
SERIAL_ECHOLN(current_command);
#if ENABLED(M100_FREE_MEMORY_WATCHER)
SERIAL_ECHOPAIR("slot:", cmd_queue_index_r);
M100_dump_routine(" Command Queue:", (const char*)command_queue, (const char*)(command_queue + sizeof(command_queue)));
#endif
}
// Parse the next command in the queue
parser.parse(current_command);
process_parsed_command();
}
/**
* Send a "Resend: nnn" message to the host to
* indicate that a command needs to be re-sent.
*/
void flush_and_request_resend() {
2015-04-14 02:17:36 +02:00
//char command_queue[cmd_queue_index_r][100]="Resend:";
SERIAL_FLUSH();
SERIAL_PROTOCOLPGM(MSG_RESEND);
SERIAL_PROTOCOLLN(gcode_LastN + 1);
ok_to_send();
}
/**
* Send an "ok" message to the host, indicating
* that a command was successfully processed.
*
* If ADVANCED_OK is enabled also include:
* N<int> Line number of the command, if any
* P<int> Planner space remaining
* B<int> Block queue space remaining
*/
void ok_to_send() {
2016-02-21 02:35:35 +01:00
if (!send_ok[cmd_queue_index_r]) return;
2015-04-20 00:22:40 +02:00
SERIAL_PROTOCOLPGM(MSG_OK);
#if ENABLED(ADVANCED_OK)
char* p = command_queue[cmd_queue_index_r];
if (*p == 'N') {
SERIAL_PROTOCOL(' ');
SERIAL_ECHO(*p++);
while (NUMERIC_SIGNED(*p))
SERIAL_ECHO(*p++);
}
SERIAL_PROTOCOLPGM(" P"); SERIAL_PROTOCOL(int(BLOCK_BUFFER_SIZE - planner.movesplanned() - 1));
SERIAL_PROTOCOLPGM(" B"); SERIAL_PROTOCOL(BUFSIZE - commands_in_queue);
2015-04-20 00:22:40 +02:00
#endif
2017-06-09 17:51:23 +02:00
SERIAL_EOL();
}
2017-03-16 23:20:24 +01:00
#if HAS_SOFTWARE_ENDSTOPS
/**
* Constrain the given coordinates to the software endstops.
*
2017-10-30 20:13:13 +01:00
* For DELTA/SCARA the XY constraint is based on the smallest
* radius within the set software endstops.
*/
void clamp_to_software_endstops(float target[XYZ]) {
if (!soft_endstops_enabled) return;
2017-10-30 20:13:13 +01:00
#if IS_KINEMATIC
const float dist_2 = HYPOT2(target[X_AXIS], target[Y_AXIS]);
if (dist_2 > soft_endstop_radius_2) {
const float ratio = soft_endstop_radius / SQRT(dist_2); // 200 / 300 = 0.66
target[X_AXIS] *= ratio;
target[Y_AXIS] *= ratio;
}
#else
#if ENABLED(MIN_SOFTWARE_ENDSTOP_X)
NOLESS(target[X_AXIS], soft_endstop_min[X_AXIS]);
#endif
#if ENABLED(MIN_SOFTWARE_ENDSTOP_Y)
NOLESS(target[Y_AXIS], soft_endstop_min[Y_AXIS]);
#endif
#if ENABLED(MAX_SOFTWARE_ENDSTOP_X)
NOMORE(target[X_AXIS], soft_endstop_max[X_AXIS]);
#endif
#if ENABLED(MAX_SOFTWARE_ENDSTOP_Y)
NOMORE(target[Y_AXIS], soft_endstop_max[Y_AXIS]);
#endif
#endif
#if ENABLED(MIN_SOFTWARE_ENDSTOP_Z)
NOLESS(target[Z_AXIS], soft_endstop_min[Z_AXIS]);
#endif
#if ENABLED(MAX_SOFTWARE_ENDSTOP_Z)
NOMORE(target[Z_AXIS], soft_endstop_max[Z_AXIS]);
#endif
}
#endif
#if ENABLED(AUTO_BED_LEVELING_BILINEAR)
// Get the Z adjustment for non-linear bed leveling
2017-11-03 02:17:51 +01:00
float bilinear_z_offset(const float raw[XYZ]) {
2016-09-27 09:38:38 +02:00
static float z1, d2, z3, d4, L, D, ratio_x, ratio_y,
last_x = -999.999, last_y = -999.999;
2016-09-27 09:38:38 +02:00
// Whole units for the grid line indices. Constrained within bounds.
static int8_t gridx, gridy, nextx, nexty,
last_gridx = -99, last_gridy = -99;
2016-09-28 19:56:35 +02:00
// XY relative to the probed area
2017-11-03 02:17:51 +01:00
const float rx = raw[X_AXIS] - bilinear_start[X_AXIS],
ry = raw[Y_AXIS] - bilinear_start[Y_AXIS];
#if ENABLED(EXTRAPOLATE_BEYOND_GRID)
// Keep using the last grid box
#define FAR_EDGE_OR_BOX 2
#else
// Just use the grid far edge
#define FAR_EDGE_OR_BOX 1
#endif
2017-11-03 02:17:51 +01:00
if (last_x != rx) {
last_x = rx;
ratio_x = rx * ABL_BG_FACTOR(X_AXIS);
const float gx = constrain(FLOOR(ratio_x), 0, ABL_BG_POINTS_X - FAR_EDGE_OR_BOX);
ratio_x -= gx; // Subtract whole to get the ratio within the grid box
#if DISABLED(EXTRAPOLATE_BEYOND_GRID)
// Beyond the grid maintain height at grid edges
NOLESS(ratio_x, 0); // Never < 0.0. (> 1.0 is ok when nextx==gridx.)
#endif
gridx = gx;
nextx = MIN(gridx + 1, ABL_BG_POINTS_X - 1);
}
2017-11-03 02:17:51 +01:00
if (last_y != ry || last_gridx != gridx) {
2017-11-03 02:17:51 +01:00
if (last_y != ry) {
last_y = ry;
ratio_y = ry * ABL_BG_FACTOR(Y_AXIS);
const float gy = constrain(FLOOR(ratio_y), 0, ABL_BG_POINTS_Y - FAR_EDGE_OR_BOX);
ratio_y -= gy;
#if DISABLED(EXTRAPOLATE_BEYOND_GRID)
// Beyond the grid maintain height at grid edges
NOLESS(ratio_y, 0); // Never < 0.0. (> 1.0 is ok when nexty==gridy.)
#endif
gridy = gy;
nexty = MIN(gridy + 1, ABL_BG_POINTS_Y - 1);
}
if (last_gridx != gridx || last_gridy != gridy) {
last_gridx = gridx;
last_gridy = gridy;
// Z at the box corners
z1 = ABL_BG_GRID(gridx, gridy); // left-front
d2 = ABL_BG_GRID(gridx, nexty) - z1; // left-back (delta)
z3 = ABL_BG_GRID(nextx, gridy); // right-front
d4 = ABL_BG_GRID(nextx, nexty) - z3; // right-back (delta)
}
2016-09-27 09:38:38 +02:00
2017-11-03 02:17:51 +01:00
// Bilinear interpolate. Needed since ry or gridx has changed.
L = z1 + d2 * ratio_y; // Linear interp. LF -> LB
const float R = z3 + d4 * ratio_y; // Linear interp. RF -> RB
D = R - L;
}
2016-09-27 09:38:38 +02:00
const float offset = L + ratio_x * D; // the offset almost always changes
/*
2016-09-29 08:01:38 +02:00
static float last_offset = 0;
if (ABS(last_offset - offset) > 0.2) {
2016-09-29 08:01:38 +02:00
SERIAL_ECHOPGM("Sudden Shift at ");
2017-11-03 02:17:51 +01:00
SERIAL_ECHOPAIR("x=", rx);
2016-09-29 08:01:38 +02:00
SERIAL_ECHOPAIR(" / ", bilinear_grid_spacing[X_AXIS]);
SERIAL_ECHOLNPAIR(" -> gridx=", gridx);
2017-11-03 02:17:51 +01:00
SERIAL_ECHOPAIR(" y=", ry);
2016-09-29 08:01:38 +02:00
SERIAL_ECHOPAIR(" / ", bilinear_grid_spacing[Y_AXIS]);
SERIAL_ECHOLNPAIR(" -> gridy=", gridy);
SERIAL_ECHOPAIR(" ratio_x=", ratio_x);
2016-09-29 08:01:38 +02:00
SERIAL_ECHOLNPAIR(" ratio_y=", ratio_y);
SERIAL_ECHOPAIR(" z1=", z1);
SERIAL_ECHOPAIR(" z2=", z2);
SERIAL_ECHOPAIR(" z3=", z3);
2016-09-29 08:01:38 +02:00
SERIAL_ECHOLNPAIR(" z4=", z4);
2016-09-27 09:38:38 +02:00
SERIAL_ECHOPAIR(" L=", L);
SERIAL_ECHOPAIR(" R=", R);
2016-09-29 08:01:38 +02:00
SERIAL_ECHOLNPAIR(" offset=", offset);
}
last_offset = offset;
//*/
2016-09-29 08:01:38 +02:00
return offset;
}
#endif // AUTO_BED_LEVELING_BILINEAR
#if ENABLED(DELTA)
/**
* Recalculate factors used for delta kinematics whenever
* settings have been changed (e.g., by M665).
*/
2017-11-08 09:43:29 +01:00
void recalc_delta_settings() {
const float trt[ABC] = DELTA_RADIUS_TRIM_TOWER,
drt[ABC] = DELTA_DIAGONAL_ROD_TRIM_TOWER;
2017-11-08 09:43:29 +01:00
delta_tower[A_AXIS][X_AXIS] = cos(RADIANS(210 + delta_tower_angle_trim[A_AXIS])) * (delta_radius + trt[A_AXIS]); // front left tower
delta_tower[A_AXIS][Y_AXIS] = sin(RADIANS(210 + delta_tower_angle_trim[A_AXIS])) * (delta_radius + trt[A_AXIS]);
delta_tower[B_AXIS][X_AXIS] = cos(RADIANS(330 + delta_tower_angle_trim[B_AXIS])) * (delta_radius + trt[B_AXIS]); // front right tower
delta_tower[B_AXIS][Y_AXIS] = sin(RADIANS(330 + delta_tower_angle_trim[B_AXIS])) * (delta_radius + trt[B_AXIS]);
delta_tower[C_AXIS][X_AXIS] = cos(RADIANS( 90 + delta_tower_angle_trim[C_AXIS])) * (delta_radius + trt[C_AXIS]); // back middle tower
delta_tower[C_AXIS][Y_AXIS] = sin(RADIANS( 90 + delta_tower_angle_trim[C_AXIS])) * (delta_radius + trt[C_AXIS]);
delta_diagonal_rod_2_tower[A_AXIS] = sq(delta_diagonal_rod + drt[A_AXIS]);
delta_diagonal_rod_2_tower[B_AXIS] = sq(delta_diagonal_rod + drt[B_AXIS]);
delta_diagonal_rod_2_tower[C_AXIS] = sq(delta_diagonal_rod + drt[C_AXIS]);
update_software_endstops(Z_AXIS);
2018-06-12 04:42:39 +02:00
axis_homed = 0;
}
/**
* Delta Inverse Kinematics
*
2017-11-03 02:17:51 +01:00
* Calculate the tower positions for a given machine
* position, storing the result in the delta[] array.
*
* This is an expensive calculation, requiring 3 square
* roots per segmented linear move, and strains the limits
* of a Mega2560 with a Graphical Display.
*
* Suggested optimizations include:
*
* - Disable the home_offset (M206) and/or position_shift (G92)
* features to remove up to 12 float additions.
*/
#define DELTA_DEBUG(VAR) do { \
SERIAL_ECHOPAIR("cartesian X:", VAR[X_AXIS]); \
SERIAL_ECHOPAIR(" Y:", VAR[Y_AXIS]); \
SERIAL_ECHOLNPAIR(" Z:", VAR[Z_AXIS]); \
SERIAL_ECHOPAIR("delta A:", delta[A_AXIS]); \
SERIAL_ECHOPAIR(" B:", delta[B_AXIS]); \
SERIAL_ECHOLNPAIR(" C:", delta[C_AXIS]); \
2017-06-15 22:17:41 +02:00
}while(0)
2017-11-03 02:17:51 +01:00
void inverse_kinematics(const float raw[XYZ]) {
#if HOTENDS > 1
// Delta hotend offsets must be applied in Cartesian space with no "spoofing"
const float pos[XYZ] = {
raw[X_AXIS] - hotend_offset[X_AXIS][active_extruder],
raw[Y_AXIS] - hotend_offset[Y_AXIS][active_extruder],
raw[Z_AXIS]
};
DELTA_IK(pos);
//DELTA_DEBUG(pos);
#else
DELTA_IK(raw);
//DELTA_DEBUG(raw);
#endif
}
/**
* Calculate the highest Z position where the
* effector has the full range of XY motion.
*/
float delta_safe_distance_from_top() {
2017-11-03 02:17:51 +01:00
float cartesian[XYZ] = { 0, 0, 0 };
2016-07-22 00:46:22 +02:00
inverse_kinematics(cartesian);
const float centered_extent = delta[A_AXIS];
2017-11-22 21:06:26 +01:00
cartesian[Y_AXIS] = DELTA_PRINTABLE_RADIUS;
2016-07-22 00:46:22 +02:00
inverse_kinematics(cartesian);
return ABS(centered_extent - delta[A_AXIS]);
}
/**
* Delta Forward Kinematics
*
* See the Wikipedia article "Trilateration"
* https://en.wikipedia.org/wiki/Trilateration
*
* Establish a new coordinate system in the plane of the
* three carriage points. This system has its origin at
* tower1, with tower2 on the X axis. Tower3 is in the X-Y
* plane with a Z component of zero.
* We will define unit vectors in this coordinate system
* in our original coordinate system. Then when we calculate
* the Xnew, Ynew and Znew values, we can translate back into
* the original system by moving along those unit vectors
* by the corresponding values.
*
* Variable names matched to Marlin, c-version, and avoid the
* use of any vector library.
*
* by Andreas Hardtung 2016-06-07
* based on a Java function from "Delta Robot Kinematics V3"
* by Steve Graves
*
* The result is stored in the cartes[] array.
*/
void forward_kinematics_DELTA(const float &z1, const float &z2, const float &z3) {
// Create a vector in old coordinates along x axis of new coordinate
2017-12-02 06:21:02 +01:00
const float p12[] = {
delta_tower[B_AXIS][X_AXIS] - delta_tower[A_AXIS][X_AXIS],
delta_tower[B_AXIS][Y_AXIS] - delta_tower[A_AXIS][Y_AXIS],
z2 - z1
},
2016-06-07 01:44:14 +02:00
// Get the reciprocal of Magnitude of vector.
d2 = sq(p12[0]) + sq(p12[1]) + sq(p12[2]), inv_d = RSQRT(d2),
2016-06-07 01:44:14 +02:00
// Create unit vector by multiplying by the inverse of the magnitude.
ex[3] = { p12[0] * inv_d, p12[1] * inv_d, p12[2] * inv_d },
2016-06-07 01:44:14 +02:00
// Get the vector from the origin of the new system to the third point.
2017-12-02 06:21:02 +01:00
p13[3] = {
delta_tower[C_AXIS][X_AXIS] - delta_tower[A_AXIS][X_AXIS],
delta_tower[C_AXIS][Y_AXIS] - delta_tower[A_AXIS][Y_AXIS],
z3 - z1
},
2016-06-07 01:44:14 +02:00
// Use the dot product to find the component of this vector on the X axis.
2017-12-02 06:21:02 +01:00
i = ex[0] * p13[0] + ex[1] * p13[1] + ex[2] * p13[2],
2016-06-07 01:44:14 +02:00
// Create a vector along the x axis that represents the x component of p13.
2017-12-02 06:21:02 +01:00
iex[] = { ex[0] * i, ex[1] * i, ex[2] * i };
2016-06-07 01:44:14 +02:00
// Subtract the X component from the original vector leaving only Y. We use the
// variable that will be the unit vector after we scale it.
float ey[3] = { p13[0] - iex[0], p13[1] - iex[1], p13[2] - iex[2] };
2016-06-07 01:44:14 +02:00
// The magnitude and the inverse of the magnitude of Y component
const float j2 = sq(ey[0]) + sq(ey[1]) + sq(ey[2]), inv_j = RSQRT(j2);
2016-06-07 01:44:14 +02:00
// Convert to a unit vector
ey[0] *= inv_j; ey[1] *= inv_j; ey[2] *= inv_j;
2016-06-07 01:44:14 +02:00
// The cross product of the unit x and y is the unit z
// float[] ez = vectorCrossProd(ex, ey);
2017-12-02 06:21:02 +01:00
const float ez[3] = {
ex[1] * ey[2] - ex[2] * ey[1],
ex[2] * ey[0] - ex[0] * ey[2],
ex[0] * ey[1] - ex[1] * ey[0]
2017-12-02 06:21:02 +01:00
},
// We now have the d, i and j values defined in Wikipedia.
// Plug them into the equations defined in Wikipedia for Xnew, Ynew and Znew
Xnew = (delta_diagonal_rod_2_tower[A_AXIS] - delta_diagonal_rod_2_tower[B_AXIS] + d2) * inv_d * 0.5,
Ynew = ((delta_diagonal_rod_2_tower[A_AXIS] - delta_diagonal_rod_2_tower[C_AXIS] + sq(i) + j2) * 0.5 - i * Xnew) * inv_j,
2017-12-02 06:21:02 +01:00
Znew = SQRT(delta_diagonal_rod_2_tower[A_AXIS] - HYPOT2(Xnew, Ynew));
// Start from the origin of the old coordinates and add vectors in the
// old coords that represent the Xnew, Ynew and Znew to find the point
// in the old system.
2017-03-08 00:42:04 +01:00
cartes[X_AXIS] = delta_tower[A_AXIS][X_AXIS] + ex[0] * Xnew + ey[0] * Ynew - ez[0] * Znew;
cartes[Y_AXIS] = delta_tower[A_AXIS][Y_AXIS] + ex[1] * Xnew + ey[1] * Ynew - ez[1] * Znew;
cartes[Z_AXIS] = z1 + ex[2] * Xnew + ey[2] * Ynew - ez[2] * Znew;
2016-10-13 17:51:44 +02:00
}
2016-06-07 01:44:14 +02:00
void forward_kinematics_DELTA(const float (&point)[ABC]) {
2016-08-21 05:38:32 +02:00
forward_kinematics_DELTA(point[A_AXIS], point[B_AXIS], point[C_AXIS]);
}
#endif // DELTA
2018-09-09 04:17:02 +02:00
#if ENABLED(HANGPRINTER)
/**
* Recalculate factors used for hangprinter kinematics whenever
* settings have been changed (e.g., by M665).
*/
void recalc_hangprinter_settings(){
HANGPRINTER_IK_ORIGIN(line_lengths_origin);
#if ENABLED(LINE_BUILDUP_COMPENSATION_FEATURE)
const uint8_t mech_adv_tmp[MOV_AXIS] = MECHANICAL_ADVANTAGE,
actn_pts_tmp[MOV_AXIS] = ACTION_POINTS;
const uint16_t m_g_t_tmp[MOV_AXIS] = MOTOR_GEAR_TEETH,
s_g_t_tmp[MOV_AXIS] = SPOOL_GEAR_TEETH;
const float mnt_l_tmp[MOV_AXIS] = MOUNTED_LINE;
float s_r2_tmp[MOV_AXIS] = SPOOL_RADII,
steps_per_unit_times_r_tmp[MOV_AXIS];
uint8_t nr_lines_dir_tmp[MOV_AXIS];
LOOP_MOV_AXIS(i){
steps_per_unit_times_r_tmp[i] = (float(mech_adv_tmp[i])*STEPS_PER_MOTOR_REVOLUTION*s_g_t_tmp[i])/(2*M_PI*m_g_t_tmp[i]);
nr_lines_dir_tmp[i] = mech_adv_tmp[i]*actn_pts_tmp[i];
s_r2_tmp[i] *= s_r2_tmp[i];
planner.k2[i] = -(float)nr_lines_dir_tmp[i]*SPOOL_BUILDUP_FACTOR;
planner.k0[i] = 2.0*steps_per_unit_times_r_tmp[i]/planner.k2[i];
}
// Assumes spools are mounted near D-anchor in ceiling
#define HYP3D(x,y,z) SQRT(sq(x) + sq(y) + sq(z))
float line_on_spool_origin_tmp[MOV_AXIS];
line_on_spool_origin_tmp[A_AXIS] = actn_pts_tmp[A_AXIS] * mnt_l_tmp[A_AXIS]
- actn_pts_tmp[A_AXIS] * HYPOT(anchor_A_y, anchor_D_z - anchor_A_z)
- nr_lines_dir_tmp[A_AXIS] * line_lengths_origin[A_AXIS];
line_on_spool_origin_tmp[B_AXIS] = actn_pts_tmp[B_AXIS] * mnt_l_tmp[B_AXIS]
- actn_pts_tmp[B_AXIS] * HYP3D(anchor_B_x, anchor_B_y, anchor_D_z - anchor_B_z)
- nr_lines_dir_tmp[B_AXIS] * line_lengths_origin[B_AXIS];
line_on_spool_origin_tmp[C_AXIS] = actn_pts_tmp[C_AXIS] * mnt_l_tmp[C_AXIS]
- actn_pts_tmp[C_AXIS] * HYP3D(anchor_C_x, anchor_C_y, anchor_D_z - anchor_C_z)
- nr_lines_dir_tmp[C_AXIS] * line_lengths_origin[C_AXIS];
line_on_spool_origin_tmp[D_AXIS] = actn_pts_tmp[D_AXIS] * mnt_l_tmp[D_AXIS]
- nr_lines_dir_tmp[D_AXIS] * line_lengths_origin[D_AXIS];
LOOP_MOV_AXIS(i) {
planner.axis_steps_per_mm[i] = steps_per_unit_times_r_tmp[i] /
SQRT((SPOOL_BUILDUP_FACTOR) * line_on_spool_origin_tmp[i] + s_r2_tmp[i]);
planner.k1[i] = (SPOOL_BUILDUP_FACTOR) *
(line_on_spool_origin_tmp[i] + nr_lines_dir_tmp[i] * line_lengths_origin[i]) + s_r2_tmp[i];
planner.sqrtk1[i] = SQRT(planner.k1[i]);
}
planner.axis_steps_per_mm[E_AXIS] = DEFAULT_E_AXIS_STEPS_PER_UNIT;
#endif // LINE_BUILDUP_COMPENSATION_FEATURE
SYNC_PLAN_POSITION_KINEMATIC(); // recalcs line lengths in case anchor was moved
}
/**
* Hangprinter inverse kinematics
*/
void inverse_kinematics(const float raw[XYZ]) {
HANGPRINTER_IK(raw);
}
/**
* Hangprinter forward kinematics
* Basic idea is to subtract squared line lengths to get linear equations.
* Subtracting d*d from a*a, b*b, and c*c gives the cleanest derivation:
*
* a*a - d*d = k1 + k2*y + k3*z <---- a line (I)
* b*b - d*d = k4 + k5*x + k6*y + k7*z <---- a plane (II)
* c*c - d*d = k8 + k9*x + k10*y + k11*z <---- a plane (III)
*
* Use (I) to reduce (II) and (III) into lines. Eliminate y, keep z.
*
* (II): b*b - d*d = k12 + k13*x + k14*z
* <=> x = k0b + k1b*z, <---- a line (IV)
*
* (III): c*c - d*d = k15 + k16*x + k17*z
* <=> x = k0c + k1c*z, <---- a line (V)
*
* where k1, k2, ..., k17, k0b, k0c, k1b, and k1c are known constants.
*
* These two straight lines are not parallel, so they will cross in exactly one point.
* Find z by setting (IV) = (V)
* Find x by inserting z into (V)
* Find y by inserting z into (I)
*
* Warning: truncation errors will typically be in the order of a few tens of microns.
*/
void forward_kinematics_HANGPRINTER(float a, float b, float c, float d){
const float Asq = sq(anchor_A_y) + sq(anchor_A_z),
Bsq = sq(anchor_B_x) + sq(anchor_B_y) + sq(anchor_B_z),
Csq = sq(anchor_C_x) + sq(anchor_C_y) + sq(anchor_C_z),
Dsq = sq(anchor_D_z),
aa = sq(a),
dd = sq(d),
k0b = (-sq(b) + Bsq - Dsq + dd) / (2.0 * anchor_B_x) + (anchor_B_y / (2.0 * anchor_A_y * anchor_B_x)) * (Dsq - Asq + aa - dd),
k0c = (-sq(c) + Csq - Dsq + dd) / (2.0 * anchor_C_x) + (anchor_C_y / (2.0 * anchor_A_y * anchor_C_x)) * (Dsq - Asq + aa - dd),
k1b = (anchor_B_y * (anchor_A_z - anchor_D_z)) / (anchor_A_y * anchor_B_x) + (anchor_D_z - anchor_B_z) / anchor_B_x,
k1c = (anchor_C_y * (anchor_A_z - anchor_D_z)) / (anchor_A_y * anchor_C_x) + (anchor_D_z - anchor_C_z) / anchor_C_x;
cartes[Z_AXIS] = (k0b - k0c) / (k1c - k1b);
cartes[X_AXIS] = k0c + k1c * cartes[Z_AXIS];
cartes[Y_AXIS] = (Asq - Dsq - aa + dd) / (2.0 * anchor_A_y) + ((anchor_D_z - anchor_A_z) / anchor_A_y) * cartes[Z_AXIS];
}
#endif // HANGPRINTER
/**
* Get the stepper positions in the cartes[] array.
* Forward kinematics are applied for DELTA and SCARA.
*
* The result is in the current coordinate space with
* leveling applied. The coordinates need to be run through
2017-11-03 02:17:51 +01:00
* unapply_leveling to obtain machine coordinates suitable
* for current_position, etc.
*/
void get_cartesian_from_steppers() {
#if ENABLED(DELTA)
forward_kinematics_DELTA(
planner.get_axis_position_mm(A_AXIS),
planner.get_axis_position_mm(B_AXIS),
planner.get_axis_position_mm(C_AXIS)
);
2018-09-09 04:17:02 +02:00
#elif ENABLED(HANGPRINTER)
forward_kinematics_HANGPRINTER(
planner.get_axis_position_mm(A_AXIS),
planner.get_axis_position_mm(B_AXIS),
planner.get_axis_position_mm(C_AXIS),
planner.get_axis_position_mm(D_AXIS)
);
#else
2017-11-03 02:17:51 +01:00
#if IS_SCARA
forward_kinematics_SCARA(
planner.get_axis_position_degrees(A_AXIS),
planner.get_axis_position_degrees(B_AXIS)
2017-11-03 02:17:51 +01:00
);
#else
cartes[X_AXIS] = planner.get_axis_position_mm(X_AXIS);
cartes[Y_AXIS] = planner.get_axis_position_mm(Y_AXIS);
2017-11-03 02:17:51 +01:00
#endif
cartes[Z_AXIS] = planner.get_axis_position_mm(Z_AXIS);
#endif
}
/**
* Set the current_position for an axis based on
* the stepper positions, removing any leveling that
* may have been applied.
2017-12-11 03:49:45 +01:00
*
* To prevent small shifts in axis position always call
* SYNC_PLAN_POSITION_KINEMATIC after updating axes with this.
*
* To keep hosts in sync, always call report_current_position
* after updating the current_position.
*/
void set_current_from_steppers_for_axis(const AxisEnum axis) {
get_cartesian_from_steppers();
2017-05-01 23:13:09 +02:00
#if PLANNER_LEVELING
2016-09-23 10:01:27 +02:00
planner.unapply_leveling(cartes);
#endif
if (axis == ALL_AXES)
2017-03-05 02:19:06 +01:00
COPY(current_position, cartes);
else
current_position[axis] = cartes[axis];
}
2017-11-29 07:05:39 +01:00
#if IS_CARTESIAN
#if ENABLED(SEGMENT_LEVELED_MOVES)
/**
* Prepare a segmented move on a CARTESIAN setup.
*
* This calls planner.buffer_line several times, adding
* small incremental moves. This allows the planner to
* apply more detailed bed leveling to the full move.
*/
2017-12-02 06:21:02 +01:00
inline void segmented_line_to_destination(const float &fr_mm_s, const float segment_size=LEVELED_SEGMENT_LENGTH) {
2017-11-29 07:05:39 +01:00
const float xdiff = destination[X_AXIS] - current_position[X_AXIS],
ydiff = destination[Y_AXIS] - current_position[Y_AXIS];
// If the move is only in Z/E don't split up the move
if (!xdiff && !ydiff) {
planner.buffer_line_kinematic(destination, fr_mm_s, active_extruder);
return;
}
// Remaining cartesian distances
const float zdiff = destination[Z_AXIS] - current_position[Z_AXIS],
2018-09-09 04:17:02 +02:00
ediff = destination[E_CART] - current_position[E_CART];
2017-11-29 07:05:39 +01:00
// Get the linear distance in XYZ
// If the move is very short, check the E move distance
// No E move either? Game over.
float cartesian_mm = SQRT(sq(xdiff) + sq(ydiff) + sq(zdiff));
if (UNEAR_ZERO(cartesian_mm)) cartesian_mm = ABS(ediff);
2017-11-29 07:05:39 +01:00
if (UNEAR_ZERO(cartesian_mm)) return;
// The length divided by the segment size
// At least one segment is required
uint16_t segments = cartesian_mm / segment_size;
NOLESS(segments, 1);
// The approximate length of each segment
const float inv_segments = 1.0f / float(segments),
cartesian_segment_mm = cartesian_mm * inv_segments,
2017-11-29 07:05:39 +01:00
segment_distance[XYZE] = {
xdiff * inv_segments,
ydiff * inv_segments,
zdiff * inv_segments,
ediff * inv_segments
};
// SERIAL_ECHOPAIR("mm=", cartesian_mm);
// SERIAL_ECHOLNPAIR(" segments=", segments);
// SERIAL_ECHOLNPAIR(" segment_mm=", cartesian_segment_mm);
2017-11-29 07:05:39 +01:00
// Get the raw current position as starting point
float raw[XYZE];
COPY(raw, current_position);
// Calculate and execute the segments
2017-12-02 06:21:02 +01:00
while (--segments) {
2017-11-29 07:05:39 +01:00
static millis_t next_idle_ms = millis() + 200UL;
thermalManager.manage_heater(); // This returns immediately if not really needed.
if (ELAPSED(millis(), next_idle_ms)) {
next_idle_ms = millis() + 200UL;
idle();
}
LOOP_XYZE(i) raw[i] += segment_distance[i];
2018-05-20 15:19:11 +02:00
if (!planner.buffer_line_kinematic(raw, fr_mm_s, active_extruder, cartesian_segment_mm))
break;
2017-11-29 07:05:39 +01:00
}
// Since segment_distance is only approximate,
// the final move must be to the exact destination.
planner.buffer_line_kinematic(destination, fr_mm_s, active_extruder, cartesian_segment_mm);
2017-11-29 07:05:39 +01:00
}
#elif ENABLED(MESH_BED_LEVELING)
/**
* Prepare a mesh-leveled linear move in a Cartesian setup,
* splitting the move where it crosses mesh borders.
*/
2017-12-02 06:21:02 +01:00
void mesh_line_to_destination(const float fr_mm_s, uint8_t x_splits=0xFF, uint8_t y_splits=0xFF) {
// Get current and destination cells for this line
2017-11-03 02:17:51 +01:00
int cx1 = mbl.cell_index_x(current_position[X_AXIS]),
cy1 = mbl.cell_index_y(current_position[Y_AXIS]),
cx2 = mbl.cell_index_x(destination[X_AXIS]),
cy2 = mbl.cell_index_y(destination[Y_AXIS]);
NOMORE(cx1, GRID_MAX_POINTS_X - 2);
NOMORE(cy1, GRID_MAX_POINTS_Y - 2);
NOMORE(cx2, GRID_MAX_POINTS_X - 2);
NOMORE(cy2, GRID_MAX_POINTS_Y - 2);
2017-12-02 06:21:02 +01:00
// Start and end in the same cell? No split needed.
if (cx1 == cx2 && cy1 == cy2) {
2017-11-09 04:28:11 +01:00
buffer_line_to_destination(fr_mm_s);
set_current_from_destination();
return;
}
2016-07-17 04:08:54 +02:00
2018-05-13 10:25:31 +02:00
#define MBL_SEGMENT_END(A) (current_position[_AXIS(A)] + (destination[_AXIS(A)] - current_position[_AXIS(A)]) * normalized_dist)
2018-09-09 04:17:02 +02:00
#define MBL_SEGMENT_END_E (current_position[E_CART] + (destination[E_CART] - current_position[E_CART]) * normalized_dist)
2016-07-17 04:20:16 +02:00
float normalized_dist, end[XYZE];
const int8_t gcx = MAX(cx1, cx2), gcy = MAX(cy1, cy2);
2017-12-02 06:21:02 +01:00
// Crosses on the X and not already split on this X?
// The x_splits flags are insurance against rounding errors.
if (cx2 != cx1 && TEST(x_splits, gcx)) {
2017-12-02 06:21:02 +01:00
// Split on the X grid line
CBI(x_splits, gcx);
2017-03-05 02:19:06 +01:00
COPY(end, destination);
2017-11-03 02:17:51 +01:00
destination[X_AXIS] = mbl.index_to_xpos[gcx];
normalized_dist = (destination[X_AXIS] - current_position[X_AXIS]) / (end[X_AXIS] - current_position[X_AXIS]);
destination[Y_AXIS] = MBL_SEGMENT_END(Y);
}
2017-12-02 06:21:02 +01:00
// Crosses on the Y and not already split on this Y?
else if (cy2 != cy1 && TEST(y_splits, gcy)) {
2017-12-02 06:21:02 +01:00
// Split on the Y grid line
CBI(y_splits, gcy);
2017-03-05 02:19:06 +01:00
COPY(end, destination);
2017-11-03 02:17:51 +01:00
destination[Y_AXIS] = mbl.index_to_ypos[gcy];
normalized_dist = (destination[Y_AXIS] - current_position[Y_AXIS]) / (end[Y_AXIS] - current_position[Y_AXIS]);
destination[X_AXIS] = MBL_SEGMENT_END(X);
}
else {
2017-12-02 06:21:02 +01:00
// Must already have been split on these border(s)
2017-11-09 04:28:11 +01:00
buffer_line_to_destination(fr_mm_s);
set_current_from_destination();
return;
}
destination[Z_AXIS] = MBL_SEGMENT_END(Z);
2018-09-09 04:17:02 +02:00
destination[E_CART] = MBL_SEGMENT_END_E;
// Do the split and look for more borders
mesh_line_to_destination(fr_mm_s, x_splits, y_splits);
// Restore destination from stack
2017-03-05 02:19:06 +01:00
COPY(destination, end);
mesh_line_to_destination(fr_mm_s, x_splits, y_splits);
}
2017-11-29 07:05:39 +01:00
#elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
2018-05-13 10:25:31 +02:00
#define CELL_INDEX(A,V) ((V - bilinear_start[_AXIS(A)]) * ABL_BG_FACTOR(_AXIS(A)))
/**
* Prepare a bilinear-leveled linear move on Cartesian,
* splitting the move where it crosses grid borders.
*/
2017-12-02 06:21:02 +01:00
void bilinear_line_to_destination(const float fr_mm_s, uint16_t x_splits=0xFFFF, uint16_t y_splits=0xFFFF) {
// Get current and destination cells for this line
int cx1 = CELL_INDEX(X, current_position[X_AXIS]),
cy1 = CELL_INDEX(Y, current_position[Y_AXIS]),
cx2 = CELL_INDEX(X, destination[X_AXIS]),
cy2 = CELL_INDEX(Y, destination[Y_AXIS]);
cx1 = constrain(cx1, 0, ABL_BG_POINTS_X - 2);
cy1 = constrain(cy1, 0, ABL_BG_POINTS_Y - 2);
cx2 = constrain(cx2, 0, ABL_BG_POINTS_X - 2);
cy2 = constrain(cy2, 0, ABL_BG_POINTS_Y - 2);
2017-12-02 06:21:02 +01:00
// Start and end in the same cell? No split needed.
if (cx1 == cx2 && cy1 == cy2) {
2017-11-09 04:28:11 +01:00
buffer_line_to_destination(fr_mm_s);
set_current_from_destination();
return;
}
2018-05-13 10:25:31 +02:00
#define LINE_SEGMENT_END(A) (current_position[_AXIS(A)] + (destination[_AXIS(A)] - current_position[_AXIS(A)]) * normalized_dist)
2018-09-09 04:17:02 +02:00
#define LINE_SEGMENT_END_E (current_position[E_CART] + (destination[E_CART] - current_position[E_CART]) * normalized_dist)
float normalized_dist, end[XYZE];
const int8_t gcx = MAX(cx1, cx2), gcy = MAX(cy1, cy2);
2017-12-02 06:21:02 +01:00
// Crosses on the X and not already split on this X?
// The x_splits flags are insurance against rounding errors.
if (cx2 != cx1 && TEST(x_splits, gcx)) {
2017-12-02 06:21:02 +01:00
// Split on the X grid line
CBI(x_splits, gcx);
2017-03-05 02:19:06 +01:00
COPY(end, destination);
2017-11-03 02:17:51 +01:00
destination[X_AXIS] = bilinear_start[X_AXIS] + ABL_BG_SPACING(X_AXIS) * gcx;
normalized_dist = (destination[X_AXIS] - current_position[X_AXIS]) / (end[X_AXIS] - current_position[X_AXIS]);
destination[Y_AXIS] = LINE_SEGMENT_END(Y);
}
2017-12-02 06:21:02 +01:00
// Crosses on the Y and not already split on this Y?
else if (cy2 != cy1 && TEST(y_splits, gcy)) {
2017-12-02 06:21:02 +01:00
// Split on the Y grid line
CBI(y_splits, gcy);
2017-03-05 02:19:06 +01:00
COPY(end, destination);
2017-11-03 02:17:51 +01:00
destination[Y_AXIS] = bilinear_start[Y_AXIS] + ABL_BG_SPACING(Y_AXIS) * gcy;
normalized_dist = (destination[Y_AXIS] - current_position[Y_AXIS]) / (end[Y_AXIS] - current_position[Y_AXIS]);
destination[X_AXIS] = LINE_SEGMENT_END(X);
}
else {
2017-12-02 06:21:02 +01:00
// Must already have been split on these border(s)
2017-11-09 04:28:11 +01:00
buffer_line_to_destination(fr_mm_s);
set_current_from_destination();
return;
}
destination[Z_AXIS] = LINE_SEGMENT_END(Z);
2018-09-09 04:17:02 +02:00
destination[E_CART] = LINE_SEGMENT_END_E;
// Do the split and look for more borders
bilinear_line_to_destination(fr_mm_s, x_splits, y_splits);
// Restore destination from stack
2017-03-05 02:19:06 +01:00
COPY(destination, end);
bilinear_line_to_destination(fr_mm_s, x_splits, y_splits);
}
#endif // AUTO_BED_LEVELING_BILINEAR
2017-11-29 07:05:39 +01:00
#endif // IS_CARTESIAN
2015-03-15 10:43:26 +01:00
2017-12-09 10:26:48 +01:00
#if !UBL_SEGMENTED
2017-11-09 02:45:20 +01:00
#if IS_KINEMATIC
#if IS_SCARA
/**
* Before raising this value, use M665 S[seg_per_sec] to decrease
* the number of segments-per-second. Default is 200. Some deltas
* do better with 160 or lower. It would be good to know how many
* segments-per-second are actually possible for SCARA on AVR.
*
* Longer segments result in less kinematic overhead
* but may produce jagged lines. Try 0.5mm, 1.0mm, and 2.0mm
* and compare the difference.
*/
#define SCARA_MIN_SEGMENT_LENGTH 0.5f
#endif
/**
2018-09-09 04:17:02 +02:00
* Prepare a linear move in a DELTA, SCARA or HANGPRINTER setup.
*
* This calls planner.buffer_line several times, adding
2018-09-09 04:17:02 +02:00
* small incremental moves for DELTA, SCARA or HANGPRINTER.
2017-11-09 02:45:20 +01:00
*
* For Unified Bed Leveling (Delta or Segmented Cartesian)
* the ubl.prepare_segmented_line_to method replaces this.
*/
2017-12-09 12:11:22 +01:00
inline bool prepare_kinematic_move_to(const float (&rtarget)[XYZE]) {
2016-09-15 22:38:48 +02:00
// Get the top feedrate of the move in the XY plane
2017-05-12 06:22:58 +02:00
const float _feedrate_mm_s = MMS_SCALED(feedrate_mm_s);
2016-09-15 22:38:48 +02:00
2017-11-29 07:05:39 +01:00
const float xdiff = rtarget[X_AXIS] - current_position[X_AXIS],
2018-09-09 04:17:02 +02:00
ydiff = rtarget[Y_AXIS] - current_position[Y_AXIS]
#if ENABLED(HANGPRINTER)
, zdiff = rtarget[Z_AXIS] - current_position[Z_AXIS]
#endif
;
2017-11-29 07:05:39 +01:00
2018-09-09 04:17:02 +02:00
// If the move is only in Z/E (for Hangprinter only in E) don't split up the move
if (!xdiff && !ydiff
#if ENABLED(HANGPRINTER)
&& !zdiff
#endif
) {
2017-11-03 02:17:51 +01:00
planner.buffer_line_kinematic(rtarget, _feedrate_mm_s, active_extruder);
return false; // caller will update current_position
2016-09-15 22:38:48 +02:00
}
// Fail if attempting move outside printable radius
2017-11-03 02:17:51 +01:00
if (!position_is_reachable(rtarget[X_AXIS], rtarget[Y_AXIS])) return true;
2017-11-29 07:05:39 +01:00
// Remaining cartesian distances
2018-09-09 04:17:02 +02:00
const float
#if DISABLED(HANGPRINTER)
zdiff = rtarget[Z_AXIS] - current_position[Z_AXIS],
#endif
ediff = rtarget[E_CART] - current_position[E_CART];
// Get the linear distance in XYZ
// If the move is very short, check the E move distance
// No E move either? Game over.
2017-11-29 07:05:39 +01:00
float cartesian_mm = SQRT(sq(xdiff) + sq(ydiff) + sq(zdiff));
if (UNEAR_ZERO(cartesian_mm)) cartesian_mm = ABS(ediff);
if (UNEAR_ZERO(cartesian_mm)) return true;
2016-09-15 22:38:48 +02:00
// Minimum number of seconds to move the given distance
2017-05-12 06:22:58 +02:00
const float seconds = cartesian_mm / _feedrate_mm_s;
2016-09-15 22:38:48 +02:00
// The number of segments-per-second times the duration
// gives the number of segments
2016-09-15 22:38:48 +02:00
uint16_t segments = delta_segments_per_second * seconds;
// For SCARA enforce a minimum segment size
2016-09-15 22:38:48 +02:00
#if IS_SCARA
NOMORE(segments, cartesian_mm * (1.0f / float(SCARA_MIN_SEGMENT_LENGTH)));
2016-09-15 22:38:48 +02:00
#endif
// At least one segment is required
2016-09-15 22:38:48 +02:00
NOLESS(segments, 1);
// The approximate length of each segment
const float inv_segments = 1.0f / float(segments),
segment_distance[XYZE] = {
2017-11-29 07:05:39 +01:00
xdiff * inv_segments,
ydiff * inv_segments,
zdiff * inv_segments,
ediff * inv_segments
};
2018-06-30 20:44:37 +02:00
#if !HAS_FEEDRATE_SCALING
const float cartesian_segment_mm = cartesian_mm * inv_segments;
#endif
/*
SERIAL_ECHOPAIR("mm=", cartesian_mm);
SERIAL_ECHOPAIR(" seconds=", seconds);
SERIAL_ECHOPAIR(" segments=", segments);
2018-06-30 20:44:37 +02:00
#if !HAS_FEEDRATE_SCALING
SERIAL_ECHOPAIR(" segment_mm=", cartesian_segment_mm);
#endif
2018-06-30 20:44:37 +02:00
SERIAL_EOL();
//*/
2018-06-30 20:44:37 +02:00
#if HAS_FEEDRATE_SCALING
// SCARA needs to scale the feed rate from mm/s to degrees/s
// i.e., Complete the angular vector in the given time.
const float segment_length = cartesian_mm * inv_segments,
inv_segment_length = 1.0f / segment_length, // 1/mm/segs
2017-12-07 06:02:37 +01:00
inverse_secs = inv_segment_length * _feedrate_mm_s;
float oldA = planner.position_float[A_AXIS],
2018-06-30 20:44:37 +02:00
oldB = planner.position_float[B_AXIS]
#if ENABLED(DELTA_FEEDRATE_SCALING)
, oldC = planner.position_float[C_AXIS]
#endif
;
/*
SERIAL_ECHOPGM("Scaled kinematic move: ");
SERIAL_ECHOPAIR(" segment_length (inv)=", segment_length);
SERIAL_ECHOPAIR(" (", inv_segment_length);
SERIAL_ECHOPAIR(") _feedrate_mm_s=", _feedrate_mm_s);
SERIAL_ECHOPAIR(" inverse_secs=", inverse_secs);
SERIAL_ECHOPAIR(" oldA=", oldA);
2018-06-30 20:44:37 +02:00
SERIAL_ECHOPAIR(" oldB=", oldB);
#if ENABLED(DELTA_FEEDRATE_SCALING)
SERIAL_ECHOPAIR(" oldC=", oldC);
#endif
SERIAL_EOL();
safe_delay(5);
//*/
#endif
2017-12-02 06:21:02 +01:00
// Get the current position as starting point
2017-11-03 02:17:51 +01:00
float raw[XYZE];
COPY(raw, current_position);
2017-03-17 12:32:11 +01:00
// Calculate and execute the segments
2017-12-02 06:21:02 +01:00
while (--segments) {
static millis_t next_idle_ms = millis() + 200UL;
thermalManager.manage_heater(); // This returns immediately if not really needed.
if (ELAPSED(millis(), next_idle_ms)) {
next_idle_ms = millis() + 200UL;
idle();
}
2017-11-03 02:17:51 +01:00
LOOP_XYZE(i) raw[i] += segment_distance[i];
#if ENABLED(DELTA) && HOTENDS < 2
DELTA_IK(raw); // Delta can inline its kinematics
2018-09-09 04:17:02 +02:00
#elif ENABLED(HANGPRINTER)
HANGPRINTER_IK(raw); // Modifies line_lengths[ABCD]
#else
2017-11-03 02:17:51 +01:00
inverse_kinematics(raw);
#endif
2017-11-03 02:17:51 +01:00
ADJUST_DELTA(raw); // Adjust Z if bed leveling is enabled
2017-12-20 23:53:46 +01:00
#if ENABLED(SCARA_FEEDRATE_SCALING)
// For SCARA scale the feed rate from mm/s to degrees/s
// i.e., Complete the angular vector in the given time.
2018-09-09 04:17:02 +02:00
if (!planner.buffer_segment(delta[A_AXIS], delta[B_AXIS], raw[Z_AXIS], raw[E_CART], HYPOT(delta[A_AXIS] - oldA, delta[B_AXIS] - oldB) * inverse_secs, active_extruder, segment_length))
2018-05-20 15:19:11 +02:00
break;
/*
SERIAL_ECHO(segments);
SERIAL_ECHOPAIR(": X=", raw[X_AXIS]); SERIAL_ECHOPAIR(" Y=", raw[Y_AXIS]);
SERIAL_ECHOPAIR(" A=", delta[A_AXIS]); SERIAL_ECHOPAIR(" B=", delta[B_AXIS]);
SERIAL_ECHOLNPAIR(" F", HYPOT(delta[A_AXIS] - oldA, delta[B_AXIS] - oldB) * inverse_secs * 60);
safe_delay(5);
//*/
2017-12-20 23:53:46 +01:00
oldA = delta[A_AXIS]; oldB = delta[B_AXIS];
2018-06-30 20:44:37 +02:00
#elif ENABLED(DELTA_FEEDRATE_SCALING)
// For DELTA scale the feed rate from Effector mm/s to Carriage mm/s
// i.e., Complete the linear vector in the given time.
if (!planner.buffer_segment(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], raw[E_AXIS], SQRT(sq(delta[A_AXIS] - oldA) + sq(delta[B_AXIS] - oldB) + sq(delta[C_AXIS] - oldC)) * inverse_secs, active_extruder, segment_length))
2018-06-30 20:44:37 +02:00
break;
/*
SERIAL_ECHO(segments);
SERIAL_ECHOPAIR(": X=", raw[X_AXIS]); SERIAL_ECHOPAIR(" Y=", raw[Y_AXIS]);
SERIAL_ECHOPAIR(" A=", delta[A_AXIS]); SERIAL_ECHOPAIR(" B=", delta[B_AXIS]); SERIAL_ECHOPAIR(" C=", delta[C_AXIS]);
SERIAL_ECHOLNPAIR(" F", SQRT(sq(delta[A_AXIS] - oldA) + sq(delta[B_AXIS] - oldB) + sq(delta[C_AXIS] - oldC)) * inverse_secs * 60);
safe_delay(5);
//*/
oldA = delta[A_AXIS]; oldB = delta[B_AXIS]; oldC = delta[C_AXIS];
2018-09-09 04:17:02 +02:00
#elif ENABLED(HANGPRINTER)
if (!planner.buffer_line(line_lengths[A_AXIS], line_lengths[B_AXIS], line_lengths[C_AXIS], line_lengths[D_AXIS], raw[E_CART], _feedrate_mm_s, active_extruder, cartesian_segment_mm))
break;
#else
2018-09-09 04:17:02 +02:00
if (!planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], raw[E_CART], _feedrate_mm_s, active_extruder, cartesian_segment_mm))
2018-05-20 15:19:11 +02:00
break;
#endif
2017-03-17 12:32:11 +01:00
}
// Ensure last segment arrives at target location.
2018-06-30 20:44:37 +02:00
#if HAS_FEEDRATE_SCALING
2017-11-03 02:17:51 +01:00
inverse_kinematics(rtarget);
ADJUST_DELTA(rtarget);
2018-06-30 20:44:37 +02:00
#endif
#if ENABLED(SCARA_FEEDRATE_SCALING)
const float diff2 = HYPOT2(delta[A_AXIS] - oldA, delta[B_AXIS] - oldB);
if (diff2) {
2018-09-09 04:17:02 +02:00
planner.buffer_segment(delta[A_AXIS], delta[B_AXIS], rtarget[Z_AXIS], rtarget[E_CART], SQRT(diff2) * inverse_secs, active_extruder, segment_length);
/*
SERIAL_ECHOPAIR("final: A=", delta[A_AXIS]); SERIAL_ECHOPAIR(" B=", delta[B_AXIS]);
SERIAL_ECHOPAIR(" adiff=", delta[A_AXIS] - oldA); SERIAL_ECHOPAIR(" bdiff=", delta[B_AXIS] - oldB);
2018-06-30 20:44:37 +02:00
SERIAL_ECHOLNPAIR(" F", SQRT(diff2) * inverse_secs * 60);
SERIAL_EOL();
safe_delay(5);
//*/
}
#elif ENABLED(DELTA_FEEDRATE_SCALING)
const float diff2 = sq(delta[A_AXIS] - oldA) + sq(delta[B_AXIS] - oldB) + sq(delta[C_AXIS] - oldC);
if (diff2) {
planner.buffer_segment(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], rtarget[E_AXIS], SQRT(diff2) * inverse_secs, active_extruder, segment_length);
2018-06-30 20:44:37 +02:00
/*
SERIAL_ECHOPAIR("final: A=", delta[A_AXIS]); SERIAL_ECHOPAIR(" B=", delta[B_AXIS]); SERIAL_ECHOPAIR(" C=", delta[C_AXIS]);
SERIAL_ECHOPAIR(" adiff=", delta[A_AXIS] - oldA); SERIAL_ECHOPAIR(" bdiff=", delta[B_AXIS] - oldB); SERIAL_ECHOPAIR(" cdiff=", delta[C_AXIS] - oldC);
SERIAL_ECHOLNPAIR(" F", SQRT(diff2) * inverse_secs * 60);
SERIAL_EOL();
safe_delay(5);
//*/
}
#else
planner.buffer_line_kinematic(rtarget, _feedrate_mm_s, active_extruder, cartesian_segment_mm);
#endif
return false; // caller will update current_position
}
2017-11-09 02:45:20 +01:00
#else // !IS_KINEMATIC
/**
* Prepare a linear move in a Cartesian setup.
2017-11-09 02:45:20 +01:00
*
* When a mesh-based leveling system is active, moves are segmented
* according to the configuration of the leveling system.
*
* Returns true if current_position[] was set to destination[]
*/
inline bool prepare_move_to_destination_cartesian() {
2017-11-09 02:45:20 +01:00
#if HAS_MESH
2017-11-29 07:05:39 +01:00
if (planner.leveling_active && planner.leveling_active_at_z(destination[Z_AXIS])) {
#if ENABLED(AUTO_BED_LEVELING_UBL)
2017-11-09 02:45:20 +01:00
ubl.line_to_destination_cartesian(MMS_SCALED(feedrate_mm_s), active_extruder); // UBL's motion routine needs to know about
return true; // all moves, including Z-only moves.
2017-11-29 07:05:39 +01:00
#elif ENABLED(SEGMENT_LEVELED_MOVES)
segmented_line_to_destination(MMS_SCALED(feedrate_mm_s));
return false; // caller will update current_position
#else
2017-11-09 02:45:20 +01:00
/**
* For MBL and ABL-BILINEAR only segment moves when X or Y are involved.
* Otherwise fall through to do a direct single move.
*/
if (current_position[X_AXIS] != destination[X_AXIS] || current_position[Y_AXIS] != destination[Y_AXIS]) {
#if ENABLED(MESH_BED_LEVELING)
2017-11-09 02:45:20 +01:00
mesh_line_to_destination(MMS_SCALED(feedrate_mm_s));
#elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
2017-11-09 02:45:20 +01:00
bilinear_line_to_destination(MMS_SCALED(feedrate_mm_s));
#endif
return true;
}
#endif
2017-11-09 02:45:20 +01:00
}
#endif // HAS_MESH
2017-11-09 04:28:11 +01:00
buffer_line_to_destination(MMS_SCALED(feedrate_mm_s));
return false; // caller will update current_position
}
2017-11-09 02:45:20 +01:00
#endif // !IS_KINEMATIC
2017-12-09 10:26:48 +01:00
#endif // !UBL_SEGMENTED
#if ENABLED(DUAL_X_CARRIAGE)
/**
2017-12-11 09:18:02 +01:00
* Unpark the carriage, if needed
*/
2017-12-11 09:18:02 +01:00
inline bool dual_x_carriage_unpark() {
if (active_extruder_parked)
2016-11-03 03:38:26 +01:00
switch (dual_x_carriage_mode) {
2017-12-11 09:18:02 +01:00
case DXC_FULL_CONTROL_MODE: break;
2016-11-03 03:38:26 +01:00
case DXC_AUTO_PARK_MODE:
2018-09-09 04:17:02 +02:00
if (current_position[E_CART] == destination[E_CART]) {
2016-11-03 03:38:26 +01:00
// This is a travel move (with no extrusion)
// Skip it, but keep track of the current position
// (so it can be used as the start of the next non-travel move)
if (delayed_move_time != 0xFFFFFFFFUL) {
set_current_from_destination();
2016-11-03 03:38:26 +01:00
NOLESS(raised_parked_position[Z_AXIS], destination[Z_AXIS]);
delayed_move_time = millis();
return true;
2016-11-03 03:38:26 +01:00
}
}
// unpark extruder: 1) raise, 2) move into starting XY position, 3) lower
2016-11-07 07:33:12 +01:00
for (uint8_t i = 0; i < 3; i++)
2018-05-20 15:19:11 +02:00
if (!planner.buffer_line(
2016-11-07 07:33:12 +01:00
i == 0 ? raised_parked_position[X_AXIS] : current_position[X_AXIS],
i == 0 ? raised_parked_position[Y_AXIS] : current_position[Y_AXIS],
i == 2 ? current_position[Z_AXIS] : raised_parked_position[Z_AXIS],
2018-09-09 04:17:02 +02:00
current_position[E_CART],
2016-11-07 07:33:12 +01:00
i == 1 ? PLANNER_XY_FEEDRATE() : planner.max_feedrate_mm_s[Z_AXIS],
2018-05-20 15:19:11 +02:00
active_extruder)
) break;
2016-11-07 07:33:12 +01:00
delayed_move_time = 0;
2016-11-03 03:38:26 +01:00
active_extruder_parked = false;
2017-04-15 06:47:53 +02:00
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Clear active_extruder_parked");
#endif
2016-11-03 03:38:26 +01:00
break;
2017-12-11 09:18:02 +01:00
case DXC_DUPLICATION_MODE:
if (active_extruder == 0) {
2017-04-15 06:47:53 +02:00
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) {
2017-11-03 02:17:51 +01:00
SERIAL_ECHOPAIR("Set planner X", inactive_extruder_x_pos);
2017-04-15 06:47:53 +02:00
SERIAL_ECHOLNPAIR(" ... Line to X", current_position[X_AXIS] + duplicate_extruder_x_offset);
}
#endif
// move duplicate extruder into correct duplication position.
2018-09-09 04:17:02 +02:00
planner.set_position_mm(inactive_extruder_x_pos, current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_CART]);
2018-05-20 15:19:11 +02:00
if (!planner.buffer_line(
2016-11-07 07:21:45 +01:00
current_position[X_AXIS] + duplicate_extruder_x_offset,
2018-09-09 04:17:02 +02:00
current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_CART],
2018-05-20 15:19:11 +02:00
planner.max_feedrate_mm_s[X_AXIS], 1)
) break;
planner.synchronize();
SYNC_PLAN_POSITION_KINEMATIC();
extruder_duplication_enabled = true;
active_extruder_parked = false;
2017-04-15 06:47:53 +02:00
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Set extruder_duplication_enabled\nClear active_extruder_parked");
#endif
}
else {
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Active extruder not 0");
#endif
}
break;
}
2017-12-11 09:18:02 +01:00
return false;
}
#endif // DUAL_X_CARRIAGE
/**
* Prepare a single move and get ready for the next one
*
* This may result in several calls to planner.buffer_line to
2018-09-09 04:17:02 +02:00
* do smaller moves for DELTA, SCARA, HANGPRINTER, mesh moves, etc.
2017-11-10 08:32:48 +01:00
*
* Make sure current_position[E] and destination[E] are good
* before calling or cold/lengthy extrusion may get missed.
*/
void prepare_move_to_destination() {
clamp_to_software_endstops(destination);
2017-11-10 08:32:48 +01:00
#if ENABLED(PREVENT_COLD_EXTRUSION) || ENABLED(PREVENT_LENGTHY_EXTRUDE)
if (!DEBUGGING(DRYRUN)) {
2018-09-09 04:17:02 +02:00
if (destination[E_CART] != current_position[E_CART]) {
2017-11-10 08:32:48 +01:00
#if ENABLED(PREVENT_COLD_EXTRUSION)
if (thermalManager.tooColdToExtrude(active_extruder)) {
2018-09-09 04:17:02 +02:00
current_position[E_CART] = destination[E_CART]; // Behave as if the move really took place, but ignore E part
2017-11-10 08:32:48 +01:00
SERIAL_ECHO_START();
SERIAL_ECHOLNPGM(MSG_ERR_COLD_EXTRUDE_STOP);
}
#endif // PREVENT_COLD_EXTRUSION
#if ENABLED(PREVENT_LENGTHY_EXTRUDE)
2018-09-09 04:17:02 +02:00
if (ABS(destination[E_CART] - current_position[E_CART]) * planner.e_factor[active_extruder] > (EXTRUDE_MAXLENGTH)) {
current_position[E_CART] = destination[E_CART]; // Behave as if the move really took place, but ignore E part
2017-06-09 17:51:23 +02:00
SERIAL_ECHO_START();
SERIAL_ECHOLNPGM(MSG_ERR_LONG_EXTRUDE_STOP);
}
2017-11-10 08:32:48 +01:00
#endif // PREVENT_LENGTHY_EXTRUDE
}
}
#endif
2017-12-11 09:18:02 +01:00
#if ENABLED(DUAL_X_CARRIAGE)
if (dual_x_carriage_unpark()) return;
#endif
2017-05-12 08:05:11 +02:00
if (
2017-12-11 09:18:02 +01:00
#if UBL_SEGMENTED
ubl.prepare_segmented_line_to(destination, MMS_SCALED(feedrate_mm_s))
2017-05-29 16:36:41 +02:00
#elif IS_KINEMATIC
prepare_kinematic_move_to(destination)
#else
2017-05-12 08:05:11 +02:00
prepare_move_to_destination_cartesian()
#endif
2017-05-12 08:05:11 +02:00
) return;
set_current_from_destination();
}
#if ENABLED(ARC_SUPPORT)
#if N_ARC_CORRECTION < 1
#undef N_ARC_CORRECTION
#define N_ARC_CORRECTION 1
#endif
2016-03-27 05:36:36 +02:00
/**
* Plan an arc in 2 dimensions
2016-03-27 05:36:36 +02:00
*
* The arc is approximated by generating many small linear segments.
* The length of each segment is configured in MM_PER_ARC_SEGMENT (Default 1mm)
* Arcs should only be made relatively large (over 5mm), as larger arcs with
* larger segments will tend to be more efficient. Your slicer should have
* options for G2/G3 arc generation. In future these options may be GCode tunable.
2016-03-27 05:36:36 +02:00
*/
void plan_arc(
2017-12-09 12:11:22 +01:00
const float (&cart)[XYZE], // Destination position
const float (&offset)[2], // Center of rotation relative to current_position
const bool clockwise // Clockwise?
) {
#if ENABLED(CNC_WORKSPACE_PLANES)
AxisEnum p_axis, q_axis, l_axis;
switch (workspace_plane) {
2017-11-07 00:16:15 +01:00
default:
case PLANE_XY: p_axis = X_AXIS; q_axis = Y_AXIS; l_axis = Z_AXIS; break;
case PLANE_ZX: p_axis = Z_AXIS; q_axis = X_AXIS; l_axis = Y_AXIS; break;
case PLANE_YZ: p_axis = Y_AXIS; q_axis = Z_AXIS; l_axis = X_AXIS; break;
}
#else
constexpr AxisEnum p_axis = X_AXIS, q_axis = Y_AXIS, l_axis = Z_AXIS;
#endif
// Radius vector from center to current location
float r_P = -offset[0], r_Q = -offset[1];
const float radius = HYPOT(r_P, r_Q),
center_P = current_position[p_axis] - r_P,
center_Q = current_position[q_axis] - r_Q,
2017-12-09 12:11:22 +01:00
rt_X = cart[p_axis] - center_P,
rt_Y = cart[q_axis] - center_Q,
linear_travel = cart[l_axis] - current_position[l_axis],
2018-09-09 04:17:02 +02:00
extruder_travel = cart[E_CART] - current_position[E_CART];
// CCW angle of rotation between position and target from the circle center. Only one atan2() trig computation required.
float angular_travel = ATAN2(r_P * rt_Y - r_Q * rt_X, r_P * rt_X + r_Q * rt_Y);
if (angular_travel < 0) angular_travel += RADIANS(360);
if (clockwise) angular_travel -= RADIANS(360);
// Make a circle if the angular rotation is 0 and the target is current position
2017-12-09 12:11:22 +01:00
if (angular_travel == 0 && current_position[p_axis] == cart[p_axis] && current_position[q_axis] == cart[q_axis])
angular_travel = RADIANS(360);
const float flat_mm = radius * angular_travel,
mm_of_travel = linear_travel ? HYPOT(flat_mm, linear_travel) : ABS(flat_mm);
if (mm_of_travel < 0.001f) return;
2016-10-05 04:31:50 +02:00
uint16_t segments = FLOOR(mm_of_travel / (MM_PER_ARC_SEGMENT));
2017-12-02 06:21:02 +01:00
NOLESS(segments, 1);
/**
* Vector rotation by transformation matrix: r is the original vector, r_T is the rotated vector,
* and phi is the angle of rotation. Based on the solution approach by Jens Geisler.
* r_T = [cos(phi) -sin(phi);
2016-10-05 04:32:37 +02:00
* sin(phi) cos(phi)] * r ;
*
* For arc generation, the center of the circle is the axis of rotation and the radius vector is
* defined from the circle center to the initial position. Each line segment is formed by successive
* vector rotations. This requires only two cos() and sin() computations to form the rotation
* matrix for the duration of the entire arc. Error may accumulate from numerical round-off, since
* all double numbers are single precision on the Arduino. (True double precision will not have
* round off issues for CNC applications.) Single precision error can accumulate to be greater than
* tool precision in some cases. Therefore, arc path correction is implemented.
*
* Small angle approximation may be used to reduce computation overhead further. This approximation
* holds for everything, but very small circles and large MM_PER_ARC_SEGMENT values. In other words,
* theta_per_segment would need to be greater than 0.1 rad and N_ARC_CORRECTION would need to be large
* to cause an appreciable drift error. N_ARC_CORRECTION~=25 is more than small enough to correct for
* numerical drift error. N_ARC_CORRECTION may be on the order a hundred(s) before error becomes an
* issue for CNC machines with the single precision Arduino calculations.
*
* This approximation also allows plan_arc to immediately insert a line segment into the planner
* without the initial overhead of computing cos() or sin(). By the time the arc needs to be applied
* a correction, the planner should have caught up to the lag caused by the initial plan_arc overhead.
* This is important when there are successive arc motions.
*/
// Vector rotation matrix values
2017-12-20 23:53:46 +01:00
float raw[XYZE];
const float theta_per_segment = angular_travel / segments,
linear_per_segment = linear_travel / segments,
extruder_per_segment = extruder_travel / segments,
sin_T = theta_per_segment,
cos_T = 1 - 0.5f * sq(theta_per_segment); // Small angle approximation
2015-08-05 13:40:36 +02:00
// Initialize the linear axis
2017-12-20 23:53:46 +01:00
raw[l_axis] = current_position[l_axis];
2015-07-19 19:49:02 +02:00
// Initialize the extruder axis
2018-09-09 04:17:02 +02:00
raw[E_CART] = current_position[E_CART];
2015-07-19 19:49:02 +02:00
const float fr_mm_s = MMS_SCALED(feedrate_mm_s);
2015-07-19 19:49:02 +02:00
millis_t next_idle_ms = millis() + 200UL;
2018-06-30 20:44:37 +02:00
#if HAS_FEEDRATE_SCALING
2017-12-20 23:53:46 +01:00
// SCARA needs to scale the feed rate from mm/s to degrees/s
const float inv_segment_length = 1.0f / (MM_PER_ARC_SEGMENT),
2017-12-20 23:53:46 +01:00
inverse_secs = inv_segment_length * fr_mm_s;
float oldA = planner.position_float[A_AXIS],
2018-06-30 20:44:37 +02:00
oldB = planner.position_float[B_AXIS]
#if ENABLED(DELTA_FEEDRATE_SCALING)
, oldC = planner.position_float[C_AXIS]
#endif
;
#endif
#if N_ARC_CORRECTION > 1
int8_t arc_recalc_count = N_ARC_CORRECTION;
2017-12-20 23:53:46 +01:00
#endif
2016-10-05 04:32:37 +02:00
for (uint16_t i = 1; i < segments; i++) { // Iterate (segments-1) times
2015-07-19 19:49:02 +02:00
thermalManager.manage_heater();
2016-10-05 04:32:37 +02:00
if (ELAPSED(millis(), next_idle_ms)) {
next_idle_ms = millis() + 200UL;
idle();
}
#if N_ARC_CORRECTION > 1
if (--arc_recalc_count) {
// Apply vector rotation matrix to previous r_P / 1
const float r_new_Y = r_P * sin_T + r_Q * cos_T;
r_P = r_P * cos_T - r_Q * sin_T;
r_Q = r_new_Y;
}
else
#endif
{
#if N_ARC_CORRECTION > 1
arc_recalc_count = N_ARC_CORRECTION;
#endif
// Arc correction to radius vector. Computed only every N_ARC_CORRECTION increments.
// Compute exact location by applying transformation matrix from initial radius vector(=-offset).
// To reduce stuttering, the sin and cos could be computed at different times.
// For now, compute both at the same time.
const float cos_Ti = cos(i * theta_per_segment), sin_Ti = sin(i * theta_per_segment);
r_P = -offset[0] * cos_Ti + offset[1] * sin_Ti;
r_Q = -offset[0] * sin_Ti - offset[1] * cos_Ti;
}
2017-12-20 23:53:46 +01:00
// Update raw location
raw[p_axis] = center_P + r_P;
raw[q_axis] = center_Q + r_Q;
raw[l_axis] += linear_per_segment;
2018-09-09 04:17:02 +02:00
raw[E_CART] += extruder_per_segment;
2015-07-19 19:49:02 +02:00
2017-12-20 23:53:46 +01:00
clamp_to_software_endstops(raw);
2015-07-19 19:49:02 +02:00
2018-06-30 20:44:37 +02:00
#if HAS_FEEDRATE_SCALING
inverse_kinematics(raw);
ADJUST_DELTA(raw);
#endif
2017-12-20 23:53:46 +01:00
#if ENABLED(SCARA_FEEDRATE_SCALING)
// For SCARA scale the feed rate from mm/s to degrees/s
// i.e., Complete the angular vector in the given time.
2018-09-09 04:17:02 +02:00
if (!planner.buffer_segment(delta[A_AXIS], delta[B_AXIS], raw[Z_AXIS], raw[E_CART], HYPOT(delta[A_AXIS] - oldA, delta[B_AXIS] - oldB) * inverse_secs, active_extruder, MM_PER_ARC_SEGMENT))
2018-05-20 15:19:11 +02:00
break;
2017-12-20 23:53:46 +01:00
oldA = delta[A_AXIS]; oldB = delta[B_AXIS];
2018-06-30 20:44:37 +02:00
#elif ENABLED(DELTA_FEEDRATE_SCALING)
// For DELTA scale the feed rate from Effector mm/s to Carriage mm/s
// i.e., Complete the linear vector in the given time.
2018-09-06 08:46:25 +02:00
if (!planner.buffer_segment(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], raw[E_AXIS], SQRT(sq(delta[A_AXIS] - oldA) + sq(delta[B_AXIS] - oldB) + sq(delta[C_AXIS] - oldC)) * inverse_secs, active_extruder, MM_PER_ARC_SEGMENT))
2018-06-30 20:44:37 +02:00
break;
oldA = delta[A_AXIS]; oldB = delta[B_AXIS]; oldC = delta[C_AXIS];
#elif HAS_UBL_AND_CURVES
float pos[XYZ] = { raw[X_AXIS], raw[Y_AXIS], raw[Z_AXIS] };
planner.apply_leveling(pos);
2018-09-09 04:17:02 +02:00
if (!planner.buffer_segment(pos[X_AXIS], pos[Y_AXIS], pos[Z_AXIS], raw[E_CART], fr_mm_s, active_extruder, MM_PER_ARC_SEGMENT))
2018-05-20 15:19:11 +02:00
break;
2017-12-20 23:53:46 +01:00
#else
2018-05-20 15:19:11 +02:00
if (!planner.buffer_line_kinematic(raw, fr_mm_s, active_extruder))
break;
2017-12-20 23:53:46 +01:00
#endif
}
// Ensure last segment arrives at target location.
2018-06-30 20:44:37 +02:00
#if HAS_FEEDRATE_SCALING
2017-12-20 23:53:46 +01:00
inverse_kinematics(cart);
ADJUST_DELTA(cart);
2018-06-30 20:44:37 +02:00
#endif
#if ENABLED(SCARA_FEEDRATE_SCALING)
const float diff2 = HYPOT2(delta[A_AXIS] - oldA, delta[B_AXIS] - oldB);
if (diff2)
2018-09-09 04:17:02 +02:00
planner.buffer_segment(delta[A_AXIS], delta[B_AXIS], cart[Z_AXIS], cart[E_CART], SQRT(diff2) * inverse_secs, active_extruder, MM_PER_ARC_SEGMENT);
2018-06-30 20:44:37 +02:00
#elif ENABLED(DELTA_FEEDRATE_SCALING)
const float diff2 = sq(delta[A_AXIS] - oldA) + sq(delta[B_AXIS] - oldB) + sq(delta[C_AXIS] - oldC);
if (diff2)
2018-09-09 04:17:02 +02:00
planner.buffer_segment(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], cart[E_CART], SQRT(diff2) * inverse_secs, active_extruder, MM_PER_ARC_SEGMENT);
#elif HAS_UBL_AND_CURVES
float pos[XYZ] = { cart[X_AXIS], cart[Y_AXIS], cart[Z_AXIS] };
planner.apply_leveling(pos);
2018-09-09 04:17:02 +02:00
planner.buffer_segment(pos[X_AXIS], pos[Y_AXIS], pos[Z_AXIS], cart[E_CART], fr_mm_s, active_extruder, MM_PER_ARC_SEGMENT);
2017-12-20 23:53:46 +01:00
#else
planner.buffer_line_kinematic(cart, fr_mm_s, active_extruder);
#endif
2015-07-19 19:49:02 +02:00
COPY(current_position, cart);
} // plan_arc
#endif // ARC_SUPPORT
2015-07-19 19:49:02 +02:00
#if ENABLED(BEZIER_CURVE_SUPPORT)
void plan_cubic_move(const float (&cart)[XYZE], const float (&offset)[4]) {
cubic_b_spline(current_position, cart, offset, MMS_SCALED(feedrate_mm_s), active_extruder);
COPY(current_position, cart);
}
#endif // BEZIER_CURVE_SUPPORT
2017-05-04 23:38:29 +02:00
#if ENABLED(USE_CONTROLLER_FAN)
void controllerFan() {
2017-03-29 02:45:54 +02:00
static millis_t lastMotorOn = 0, // Last time a motor was turned on
nextMotorCheck = 0; // Last time the state was checked
const millis_t ms = millis();
2016-04-11 00:55:12 +02:00
if (ELAPSED(ms, nextMotorCheck)) {
nextMotorCheck = ms + 2500UL; // Not a time critical function, so only check every 2.5s
// If any of the drivers or the bed are enabled...
2018-05-04 07:11:13 +02:00
if (X_ENABLE_READ == X_ENABLE_ON || Y_ENABLE_READ == Y_ENABLE_ON || Z_ENABLE_READ == Z_ENABLE_ON
#if HAS_HEATED_BED
|| thermalManager.soft_pwm_amount_bed > 0
#endif
#if HAS_X2_ENABLE
|| X2_ENABLE_READ == X_ENABLE_ON
#endif
#if HAS_Y2_ENABLE
|| Y2_ENABLE_READ == Y_ENABLE_ON
#endif
#if HAS_Z2_ENABLE
|| Z2_ENABLE_READ == Z_ENABLE_ON
#endif
|| E0_ENABLE_READ == E_ENABLE_ON
#if E_STEPPERS > 1
|| E1_ENABLE_READ == E_ENABLE_ON
#if E_STEPPERS > 2
|| E2_ENABLE_READ == E_ENABLE_ON
#if E_STEPPERS > 3
|| E3_ENABLE_READ == E_ENABLE_ON
#if E_STEPPERS > 4
|| E4_ENABLE_READ == E_ENABLE_ON
#endif
#endif
#endif
#endif
) {
lastMotorOn = ms; //... set time to NOW so the fan will turn on
}
// Fan off if no steppers have been enabled for CONTROLLERFAN_SECS seconds
const uint8_t speed = (lastMotorOn && PENDING(ms, lastMotorOn + (CONTROLLERFAN_SECS) * 1000UL)) ? CONTROLLERFAN_SPEED : 0;
controllerFanSpeed = speed;
// allows digital or PWM fan output to be used (see M42 handling)
WRITE(CONTROLLER_FAN_PIN, speed);
analogWrite(CONTROLLER_FAN_PIN, speed);
}
}
#endif // USE_CONTROLLER_FAN
2016-09-15 07:28:26 +02:00
#if ENABLED(MORGAN_SCARA)
2016-09-15 07:28:26 +02:00
/**
* Morgan SCARA Forward Kinematics. Results in cartes[].
* Maths and first version by QHARLEY.
* Integrated into Marlin and slightly restructured by Joachim Cerny.
*/
2016-09-12 10:48:29 +02:00
void forward_kinematics_SCARA(const float &a, const float &b) {
2016-09-15 07:28:26 +02:00
float a_sin = sin(RADIANS(a)) * L1,
a_cos = cos(RADIANS(a)) * L1,
b_sin = sin(RADIANS(b)) * L2,
b_cos = cos(RADIANS(b)) * L2;
2016-09-12 10:48:29 +02:00
cartes[X_AXIS] = a_cos + b_cos + SCARA_OFFSET_X; //theta
cartes[Y_AXIS] = a_sin + b_sin + SCARA_OFFSET_Y; //theta+phi
2015-05-13 11:02:19 +02:00
2016-09-13 00:49:35 +02:00
/*
2016-09-22 00:54:05 +02:00
SERIAL_ECHOPAIR("SCARA FK Angle a=", a);
2016-09-15 07:28:26 +02:00
SERIAL_ECHOPAIR(" b=", b);
2016-09-13 00:49:35 +02:00
SERIAL_ECHOPAIR(" a_sin=", a_sin);
SERIAL_ECHOPAIR(" a_cos=", a_cos);
SERIAL_ECHOPAIR(" b_sin=", b_sin);
SERIAL_ECHOLNPAIR(" b_cos=", b_cos);
SERIAL_ECHOPAIR(" cartes[X_AXIS]=", cartes[X_AXIS]);
SERIAL_ECHOLNPAIR(" cartes[Y_AXIS]=", cartes[Y_AXIS]);
//*/
2015-08-05 13:40:36 +02:00
}
2016-09-15 07:28:26 +02:00
/**
* Morgan SCARA Inverse Kinematics. Results in delta[].
*
* See http://forums.reprap.org/read.php?185,283327
2016-09-26 08:30:34 +02:00
*
2016-09-15 07:28:26 +02:00
* Maths and first version by QHARLEY.
* Integrated into Marlin and slightly restructured by Joachim Cerny.
*/
2017-11-03 02:17:51 +01:00
void inverse_kinematics(const float raw[XYZ]) {
2015-08-05 13:40:36 +02:00
2016-09-12 03:11:39 +02:00
static float C2, S2, SK1, SK2, THETA, PSI;
2015-08-05 13:40:36 +02:00
2017-11-03 02:17:51 +01:00
float sx = raw[X_AXIS] - SCARA_OFFSET_X, // Translate SCARA to standard X Y
sy = raw[Y_AXIS] - SCARA_OFFSET_Y; // With scaling factor.
2015-08-05 13:40:36 +02:00
2016-09-15 07:28:26 +02:00
if (L1 == L2)
C2 = HYPOT2(sx, sy) / L1_2_2 - 1;
else
C2 = (HYPOT2(sx, sy) - (L1_2 + L2_2)) / (2.0 * L1 * L2);
2015-08-05 13:40:36 +02:00
S2 = SQRT(1 - sq(C2));
2015-08-05 13:40:36 +02:00
2016-09-15 07:28:26 +02:00
// Unrotated Arm1 plus rotated Arm2 gives the distance from Center to End
2016-09-12 03:11:39 +02:00
SK1 = L1 + L2 * C2;
2016-09-15 07:28:26 +02:00
// Rotated Arm2 gives the distance from Arm1 to Arm2
2016-09-12 03:11:39 +02:00
SK2 = L2 * S2;
2015-08-05 13:40:36 +02:00
2016-09-15 07:28:26 +02:00
// Angle of Arm1 is the difference between Center-to-End angle and the Center-to-Elbow
THETA = ATAN2(SK1, SK2) - ATAN2(sx, sy);
2016-09-15 07:28:26 +02:00
// Angle of Arm2
PSI = ATAN2(S2, C2);
2015-08-05 13:40:36 +02:00
2016-09-12 03:11:39 +02:00
delta[A_AXIS] = DEGREES(THETA); // theta is support arm angle
delta[B_AXIS] = DEGREES(THETA + PSI); // equal to sub arm angle (inverted motor)
2017-11-03 02:17:51 +01:00
delta[C_AXIS] = raw[Z_AXIS];
2015-08-05 13:40:36 +02:00
/*
2017-11-03 02:17:51 +01:00
DEBUG_POS("SCARA IK", raw);
2016-09-12 03:11:39 +02:00
DEBUG_POS("SCARA IK", delta);
SERIAL_ECHOPAIR(" SCARA (x,y) ", sx);
SERIAL_ECHOPAIR(",", sy);
SERIAL_ECHOPAIR(" C2=", C2);
SERIAL_ECHOPAIR(" S2=", S2);
SERIAL_ECHOPAIR(" Theta=", THETA);
SERIAL_ECHOLNPAIR(" Phi=", PHI);
//*/
}
2016-09-15 07:28:26 +02:00
#endif // MORGAN_SCARA
2016-09-12 10:48:29 +02:00
#if ENABLED(TEMP_STAT_LEDS)
2015-04-13 03:07:08 +02:00
static bool red_led = false;
static millis_t next_status_led_update_ms = 0;
void handle_status_leds(void) {
2016-04-11 00:55:12 +02:00
if (ELAPSED(millis(), next_status_led_update_ms)) {
2015-04-13 03:07:08 +02:00
next_status_led_update_ms += 500; // Update every 0.5s
2016-08-16 18:19:51 +02:00
float max_temp = 0.0;
#if HAS_HEATED_BED
2016-08-16 18:19:51 +02:00
max_temp = MAX3(max_temp, thermalManager.degTargetBed(), thermalManager.degBed());
#endif
2017-05-21 11:49:25 +02:00
HOTEND_LOOP()
2016-08-19 05:13:47 +02:00
max_temp = MAX3(max_temp, thermalManager.degHotend(e), thermalManager.degTargetHotend(e));
2017-06-22 16:44:39 +02:00
const bool new_led = (max_temp > 55.0) ? true : (max_temp < 54.0) ? false : red_led;
2015-04-13 03:07:08 +02:00
if (new_led != red_led) {
red_led = new_led;
#if PIN_EXISTS(STAT_LED_RED)
WRITE(STAT_LED_RED_PIN, new_led ? HIGH : LOW);
#if PIN_EXISTS(STAT_LED_BLUE)
WRITE(STAT_LED_BLUE_PIN, new_led ? LOW : HIGH);
#endif
#else
WRITE(STAT_LED_BLUE_PIN, new_led ? HIGH : LOW);
#endif
2015-04-13 03:07:08 +02:00
}
}
}
2015-04-13 03:07:08 +02:00
#endif
void enable_all_steppers() {
#if ENABLED(AUTO_POWER_CONTROL)
powerManager.power_on();
#endif
2018-09-09 04:17:02 +02:00
#if ENABLED(HANGPRINTER)
enable_A();
enable_B();
enable_C();
enable_D();
#else
enable_X();
enable_Y();
enable_Z();
enable_E4();
#endif
enable_E0();
enable_E1();
enable_E2();
enable_E3();
}
2017-12-27 05:51:55 +01:00
void disable_e_stepper(const uint8_t e) {
switch (e) {
case 0: disable_E0(); break;
case 1: disable_E1(); break;
case 2: disable_E2(); break;
case 3: disable_E3(); break;
case 4: disable_E4(); break;
}
}
2017-03-18 03:12:19 +01:00
void disable_e_steppers() {
disable_E0();
disable_E1();
disable_E2();
disable_E3();
disable_E4();
2015-04-04 00:31:35 +02:00
}
2017-03-18 03:12:19 +01:00
void disable_all_steppers() {
disable_X();
disable_Y();
disable_Z();
2017-03-18 03:12:19 +01:00
disable_e_steppers();
}
2015-04-04 00:31:35 +02:00
/**
* Manage several activities:
* - Check for Filament Runout
* - Keep the command buffer full
* - Check for maximum inactive time between commands
* - Check for maximum inactive time between stepper commands
* - Check if pin CHDK needs to go LOW
* - Check for KILL button held down
* - Check for HOME button held down
* - Check if cooling fan needs to be switched on
* - Check if an idle but hot extruder needs filament extruded (EXTRUDER_RUNOUT_PREVENT)
2015-04-04 00:31:35 +02:00
*/
2018-04-08 10:58:35 +02:00
void manage_inactivity(const bool ignore_stepper_queue/*=false*/) {
2015-08-05 13:40:36 +02:00
#if ENABLED(FILAMENT_RUNOUT_SENSOR)
runout.run();
2015-04-04 00:31:35 +02:00
#endif
if (commands_in_queue < BUFSIZE) get_available_commands();
2015-04-04 00:31:35 +02:00
2017-03-29 02:45:54 +02:00
const millis_t ms = millis();
2015-04-04 00:31:35 +02:00
if (max_inactive_time && ELAPSED(ms, previous_move_ms + max_inactive_time)) {
2017-06-09 17:51:23 +02:00
SERIAL_ERROR_START();
2017-05-20 10:03:08 +02:00
SERIAL_ECHOLNPAIR(MSG_KILL_INACTIVE_TIME, parser.command_ptr);
kill(PSTR(MSG_KILLED));
}
2017-02-10 07:13:58 +01:00
// Prevent steppers timing-out in the middle of M600
#if ENABLED(ADVANCED_PAUSE_FEATURE) && ENABLED(PAUSE_PARK_NO_STEPPER_TIMEOUT)
#define MOVE_AWAY_TEST !did_pause_print
2017-02-10 07:13:58 +01:00
#else
#define MOVE_AWAY_TEST true
#endif
if (stepper_inactive_time) {
2018-03-21 09:18:14 +01:00
if (planner.has_blocks_queued())
previous_move_ms = ms; // reset_stepper_timeout to keep steppers powered
else if (MOVE_AWAY_TEST && !ignore_stepper_queue && ELAPSED(ms, previous_move_ms + stepper_inactive_time)) {
#if ENABLED(DISABLE_INACTIVE_X)
disable_X();
#endif
#if ENABLED(DISABLE_INACTIVE_Y)
disable_Y();
#endif
#if ENABLED(DISABLE_INACTIVE_Z)
disable_Z();
#endif
#if ENABLED(DISABLE_INACTIVE_E)
disable_e_steppers();
#endif
#if ENABLED(AUTO_BED_LEVELING_UBL) && ENABLED(ULTIPANEL) // Only needed with an LCD
if (ubl.lcd_map_control) ubl.lcd_map_control = defer_return_to_status = false;
#endif
}
}
#ifdef CHDK // Check if pin should be set to LOW after M240 set it to HIGH
if (chdkActive && ELAPSED(ms, chdkHigh + CHDK_DELAY)) {
chdkActive = false;
WRITE(CHDK, LOW);
}
#endif
2015-04-04 00:31:35 +02:00
#if HAS_KILL
2015-08-05 13:40:36 +02:00
// Check if the kill button was pressed and wait just in case it was an accidental
// key kill key press
// -------------------------------------------------------------------------------
2015-04-04 00:45:41 +02:00
static int killCount = 0; // make the inactivity button a bit less responsive
const int KILL_DELAY = 750;
2015-04-04 00:31:35 +02:00
if (!READ(KILL_PIN))
killCount++;
else if (killCount > 0)
killCount--;
2015-04-04 00:31:35 +02:00
// Exceeded threshold and we can confirm that it was not accidental
// KILL the machine
// ----------------------------------------------------------------
if (killCount >= KILL_DELAY) {
2017-06-09 17:51:23 +02:00
SERIAL_ERROR_START();
SERIAL_ERRORLNPGM(MSG_KILL_BUTTON);
kill(PSTR(MSG_KILLED));
}
#endif
2015-04-04 00:31:35 +02:00
#if HAS_HOME
// Check to see if we have to home, use poor man's debouncer
// ---------------------------------------------------------
2015-04-04 00:45:41 +02:00
static int homeDebounceCount = 0; // poor man's debouncing count
const int HOME_DEBOUNCE_DELAY = 2500;
if (!IS_SD_PRINTING && !READ(HOME_PIN)) {
2015-04-04 00:31:35 +02:00
if (!homeDebounceCount) {
2016-02-21 02:35:35 +01:00
enqueue_and_echo_commands_P(PSTR("G28"));
LCD_MESSAGEPGM(MSG_AUTO_HOME);
2015-04-04 00:31:35 +02:00
}
if (homeDebounceCount < HOME_DEBOUNCE_DELAY)
homeDebounceCount++;
else
homeDebounceCount = 0;
}
2015-04-04 00:31:35 +02:00
#endif
2015-08-05 13:40:36 +02:00
2017-05-04 23:38:29 +02:00
#if ENABLED(USE_CONTROLLER_FAN)
controllerFan(); // Check if fan should be turned on to cool stepper drivers down
#endif
2015-04-04 00:31:35 +02:00
#if ENABLED(AUTO_POWER_CONTROL)
powerManager.check();
#endif
#if ENABLED(EXTRUDER_RUNOUT_PREVENT)
if (thermalManager.degHotend(active_extruder) > EXTRUDER_RUNOUT_MINTEMP
&& ELAPSED(ms, previous_move_ms + (EXTRUDER_RUNOUT_SECONDS) * 1000UL)
2018-03-21 09:18:14 +01:00
&& !planner.has_blocks_queued()
) {
#if ENABLED(SWITCHING_EXTRUDER)
2018-05-27 06:30:26 +02:00
bool oldstatus;
switch (active_extruder) {
default: oldstatus = E0_ENABLE_READ; enable_E0(); break;
#if E_STEPPERS > 1
case 2: case 3: oldstatus = E1_ENABLE_READ; enable_E1(); break;
#if E_STEPPERS > 2
case 4: oldstatus = E2_ENABLE_READ; enable_E2(); break;
#endif // E_STEPPERS > 2
#endif // E_STEPPERS > 1
}
#else // !SWITCHING_EXTRUDER
bool oldstatus;
switch (active_extruder) {
default: oldstatus = E0_ENABLE_READ; enable_E0(); break;
#if E_STEPPERS > 1
case 1: oldstatus = E1_ENABLE_READ; enable_E1(); break;
#if E_STEPPERS > 2
case 2: oldstatus = E2_ENABLE_READ; enable_E2(); break;
#if E_STEPPERS > 3
case 3: oldstatus = E3_ENABLE_READ; enable_E3(); break;
#if E_STEPPERS > 4
case 4: oldstatus = E4_ENABLE_READ; enable_E4(); break;
#endif // E_STEPPERS > 4
#endif // E_STEPPERS > 3
#endif // E_STEPPERS > 2
#endif // E_STEPPERS > 1
}
#endif // !SWITCHING_EXTRUDER
2018-09-09 04:17:02 +02:00
const float olde = current_position[E_CART];
current_position[E_CART] += EXTRUDER_RUNOUT_EXTRUDE;
planner.buffer_line_kinematic(current_position, MMM_TO_MMS(EXTRUDER_RUNOUT_SPEED), active_extruder);
2018-09-09 04:17:02 +02:00
current_position[E_CART] = olde;
planner.set_e_position_mm(olde);
planner.synchronize();
2018-05-27 06:30:26 +02:00
#if ENABLED(SWITCHING_EXTRUDER)
2018-05-27 06:30:26 +02:00
switch (active_extruder) {
default: oldstatus = E0_ENABLE_WRITE(oldstatus); break;
#if E_STEPPERS > 1
case 2: case 3: oldstatus = E1_ENABLE_WRITE(oldstatus); break;
#if E_STEPPERS > 2
case 4: oldstatus = E2_ENABLE_WRITE(oldstatus); break;
#endif // E_STEPPERS > 2
#endif // E_STEPPERS > 1
}
#else // !SWITCHING_EXTRUDER
switch (active_extruder) {
case 0: E0_ENABLE_WRITE(oldstatus); break;
#if E_STEPPERS > 1
case 1: E1_ENABLE_WRITE(oldstatus); break;
#if E_STEPPERS > 2
case 2: E2_ENABLE_WRITE(oldstatus); break;
#if E_STEPPERS > 3
case 3: E3_ENABLE_WRITE(oldstatus); break;
#if E_STEPPERS > 4
case 4: E4_ENABLE_WRITE(oldstatus); break;
#endif // E_STEPPERS > 4
#endif // E_STEPPERS > 3
#endif // E_STEPPERS > 2
#endif // E_STEPPERS > 1
}
#endif // !SWITCHING_EXTRUDER
previous_move_ms = ms; // reset_stepper_timeout to keep steppers powered
}
#endif // EXTRUDER_RUNOUT_PREVENT
2015-04-04 00:31:35 +02:00
#if ENABLED(DUAL_X_CARRIAGE)
// handle delayed move timeout
2016-04-11 00:55:12 +02:00
if (delayed_move_time && ELAPSED(ms, delayed_move_time + 1000UL) && IsRunning()) {
// travel moves have been received so enact them
delayed_move_time = 0xFFFFFFFFUL; // force moves to be done
set_destination_from_current();
prepare_move_to_destination();
}
#endif
2015-04-04 00:31:35 +02:00
#if ENABLED(TEMP_STAT_LEDS)
2015-04-04 00:31:35 +02:00
handle_status_leds();
#endif
2015-04-04 00:31:35 +02:00
2017-12-15 22:02:39 +01:00
#if ENABLED(MONITOR_DRIVER_STATUS)
monitor_tmc_driver();
#endif
2016-04-28 03:06:32 +02:00
planner.check_axes_activity();
}
/**
* Standard idle routine keeps the machine alive
*/
void idle(
#if ENABLED(ADVANCED_PAUSE_FEATURE)
bool no_stepper_sleep/*=false*/
#endif
) {
#if ENABLED(MAX7219_DEBUG)
max7219.idle_tasks();
#endif
lcd_update();
host_keepalive();
manage_inactivity(
#if ENABLED(ADVANCED_PAUSE_FEATURE)
no_stepper_sleep
#endif
);
thermalManager.manage_heater();
#if ENABLED(PRINTCOUNTER)
print_job_timer.tick();
#endif
2016-10-05 04:31:50 +02:00
#if HAS_BUZZER && DISABLED(LCD_USE_I2C_BUZZER)
buzzer.tick();
#endif
#if ENABLED(I2C_POSITION_ENCODERS)
2018-02-08 10:21:46 +01:00
static millis_t i2cpem_next_update_ms;
2018-03-21 09:18:14 +01:00
if (planner.has_blocks_queued() && ELAPSED(millis(), i2cpem_next_update_ms)) {
I2CPEM.update();
i2cpem_next_update_ms = millis() + I2CPE_MIN_UPD_TIME_MS;
}
#endif
#if HAS_AUTO_REPORTING
if (!suspend_auto_report) {
#if ENABLED(AUTO_REPORT_TEMPERATURES)
thermalManager.auto_report_temperatures();
#endif
#if ENABLED(AUTO_REPORT_SD_STATUS)
card.auto_report_sd_status();
#endif
}
#endif
}
/**
* Kill all activity and lock the machine.
* After this the machine will need to be reset.
*/
void kill(const char* lcd_msg) {
2017-06-09 17:51:23 +02:00
SERIAL_ERROR_START();
2016-07-10 04:50:45 +02:00
SERIAL_ERRORLNPGM(MSG_ERR_KILLED);
thermalManager.disable_all_heaters();
disable_all_steppers();
2017-03-29 02:45:54 +02:00
#if ENABLED(ULTRA_LCD)
2016-07-10 04:50:45 +02:00
kill_screen(lcd_msg);
2015-10-04 17:33:55 +02:00
#else
UNUSED(lcd_msg);
#endif
_delay_ms(600); // Wait a short time (allows messages to get out before shutting down.
cli(); // Stop interrupts
2017-03-29 02:45:54 +02:00
_delay_ms(250); //Wait to ensure all interrupts routines stopped
thermalManager.disable_all_heaters(); //turn off heaters again
2017-07-28 06:42:01 +02:00
#ifdef ACTION_ON_KILL
SERIAL_ECHOLNPGM("//action:" ACTION_ON_KILL);
#endif
2017-07-07 04:24:30 +02:00
2015-03-31 01:50:05 +02:00
#if HAS_POWER_SWITCH
PSU_OFF();
2015-03-31 01:50:05 +02:00
#endif
suicide();
while (1) {
#if ENABLED(USE_WATCHDOG)
watchdog_reset();
#endif
} // Wait for reset
}
/**
* Turn off heaters and stop the print in progress
* After a stop the machine may be resumed with M999
*/
2016-04-18 09:05:22 +02:00
void stop() {
thermalManager.disable_all_heaters(); // 'unpause' taken care of in here
#if ENABLED(PROBING_FANS_OFF)
if (fans_paused) fans_pause(false); // put things back the way they were
#endif
if (IsRunning()) {
Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
2017-06-09 17:51:23 +02:00
SERIAL_ERROR_START();
SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
LCD_MESSAGEPGM(MSG_STOPPED);
safe_delay(350); // allow enough time for messages to get out before stopping
Running = false;
}
}
2016-09-12 03:21:54 +02:00
/**
* Marlin entry-point: Set up before the program loop
* - Set up the kill pin, filament runout, power hold
* - Start the serial port
* - Print startup messages and diagnostics
* - Get EEPROM or default settings
* - Initialize managers for:
* temperature
* planner
* watchdog
* stepper
* photo pin
* servos
* LCD controller
* Digipot I2C
* Z probe sled
* status LEDs
*/
void setup() {
#if ENABLED(MAX7219_DEBUG)
max7219.init();
#endif
#if ENABLED(DISABLE_JTAG)
2016-09-12 03:21:54 +02:00
// Disable JTAG on AT90USB chips to free up pins for IO
MCUCR = 0x80;
MCUCR = 0x80;
#endif
#if ENABLED(FILAMENT_RUNOUT_SENSOR)
runout.setup();
2016-09-12 03:21:54 +02:00
#endif
setup_killpin();
setup_powerhold();
#if HAS_STEPPER_RESET
disableStepperDrivers();
#endif
MYSERIAL0.begin(BAUDRATE);
2016-09-12 03:21:54 +02:00
SERIAL_PROTOCOLLNPGM("start");
2017-06-09 17:51:23 +02:00
SERIAL_ECHO_START();
2016-09-12 03:21:54 +02:00
// Prepare communication for TMC drivers
2018-07-25 02:50:49 +02:00
#if HAS_DRIVER(TMC2130)
2018-02-10 18:16:08 +01:00
tmc_init_cs_pins();
#endif
2018-07-25 02:50:49 +02:00
#if HAS_DRIVER(TMC2208)
2017-12-15 22:02:39 +01:00
tmc2208_serial_begin();
#endif
2016-09-12 03:21:54 +02:00
// Check startup - does nothing if bootloader sets MCUSR to 0
byte mcu = MCUSR;
2017-06-16 21:20:58 +02:00
if (mcu & 1) SERIAL_ECHOLNPGM(MSG_POWERUP);
if (mcu & 2) SERIAL_ECHOLNPGM(MSG_EXTERNAL_RESET);
if (mcu & 4) SERIAL_ECHOLNPGM(MSG_BROWNOUT_RESET);
if (mcu & 8) SERIAL_ECHOLNPGM(MSG_WATCHDOG_RESET);
2016-09-12 03:21:54 +02:00
if (mcu & 32) SERIAL_ECHOLNPGM(MSG_SOFTWARE_RESET);
MCUSR = 0;
SERIAL_ECHOPGM(MSG_MARLIN);
2016-09-13 00:49:35 +02:00
SERIAL_CHAR(' ');
SERIAL_ECHOLNPGM(SHORT_BUILD_VERSION);
2017-06-09 17:51:23 +02:00
SERIAL_EOL();
2016-09-12 03:21:54 +02:00
2016-09-13 00:49:35 +02:00
#if defined(STRING_DISTRIBUTION_DATE) && defined(STRING_CONFIG_H_AUTHOR)
2017-06-09 17:51:23 +02:00
SERIAL_ECHO_START();
2016-09-13 00:49:35 +02:00
SERIAL_ECHOPGM(MSG_CONFIGURATION_VER);
SERIAL_ECHOPGM(STRING_DISTRIBUTION_DATE);
SERIAL_ECHOLNPGM(MSG_AUTHOR STRING_CONFIG_H_AUTHOR);
SERIAL_ECHO_START();
2016-09-13 00:49:35 +02:00
SERIAL_ECHOLNPGM("Compiled: " __DATE__);
#endif
2016-09-12 03:21:54 +02:00
2017-06-09 17:51:23 +02:00
SERIAL_ECHO_START();
2016-09-13 00:49:35 +02:00
SERIAL_ECHOPAIR(MSG_FREE_MEMORY, freeMemory());
SERIAL_ECHOLNPAIR(MSG_PLANNER_BUFFER_BYTES, int(sizeof(block_t))*(BLOCK_BUFFER_SIZE));
2016-09-12 03:21:54 +02:00
// Send "ok" after commands by default
for (int8_t i = 0; i < BUFSIZE; i++) send_ok[i] = true;
// Load data from EEPROM if available (or use defaults)
// This also updates variables in the planner, elsewhere
2017-04-10 04:47:49 +02:00
(void)settings.load();
2016-09-12 03:21:54 +02:00
#if HAS_M206_COMMAND
2017-03-05 01:01:33 +01:00
// Initialize current position based on home_offset
2017-03-05 02:19:06 +01:00
COPY(current_position, home_offset);
2017-03-05 01:01:33 +01:00
#else
ZERO(current_position);
#endif
2016-09-12 03:21:54 +02:00
// Vital to init stepper/planner equivalent for current_position
SYNC_PLAN_POSITION_KINEMATIC();
thermalManager.init(); // Initialize temperature loop
print_job_timer.init(); // Initial setup of print job timer
2018-05-20 17:59:58 +02:00
endstops.init(); // Init endstops and pullups
2016-09-12 03:21:54 +02:00
2018-05-20 17:59:58 +02:00
stepper.init(); // Init stepper. This enables interrupts!
servo_init(); // Initialize all servos, stow servo probe
2016-09-12 03:21:54 +02:00
2016-11-01 12:24:21 +01:00
#if HAS_PHOTOGRAPH
OUT_WRITE(PHOTOGRAPH_PIN, LOW);
#endif
#if HAS_CASE_LIGHT
case_light_on = CASE_LIGHT_DEFAULT_ON;
case_light_brightness = CASE_LIGHT_DEFAULT_BRIGHTNESS;
2016-11-28 06:51:51 +01:00
update_case_light();
#endif
2017-04-07 20:52:45 +02:00
#if ENABLED(SPINDLE_LASER_ENABLE)
OUT_WRITE(SPINDLE_LASER_ENABLE_PIN, !SPINDLE_LASER_ENABLE_INVERT); // init spindle to off
#if SPINDLE_DIR_CHANGE
OUT_WRITE(SPINDLE_DIR_PIN, SPINDLE_INVERT_DIR ? 255 : 0); // init rotation to clockwise (M3)
#endif
#if ENABLED(SPINDLE_LASER_PWM)
SET_OUTPUT(SPINDLE_LASER_PWM_PIN);
analogWrite(SPINDLE_LASER_PWM_PIN, SPINDLE_LASER_PWM_INVERT ? 255 : 0); // set to lowest speed
#endif
#endif
2016-09-12 03:21:54 +02:00
#if HAS_BED_PROBE
endstops.enable_z_probe(false);
#endif
2017-05-04 23:38:29 +02:00
#if ENABLED(USE_CONTROLLER_FAN)
SET_OUTPUT(CONTROLLER_FAN_PIN); //Set pin used for driver cooling fan
2016-09-12 03:21:54 +02:00
#endif
#if HAS_STEPPER_RESET
enableStepperDrivers();
#endif
#if ENABLED(DIGIPOT_I2C)
digipot_i2c_init();
#endif
#if ENABLED(DAC_STEPPER_CURRENT)
dac_init();
#endif
2017-04-14 23:36:02 +02:00
#if (ENABLED(Z_PROBE_SLED) || ENABLED(SOLENOID_PROBE)) && HAS_SOLENOID_1
OUT_WRITE(SOL1_PIN, LOW); // turn it off
#endif
2016-09-12 03:21:54 +02:00
2017-07-02 09:26:49 +02:00
#if HAS_HOME
SET_INPUT_PULLUP(HOME_PIN);
#endif
2016-09-12 03:21:54 +02:00
2016-09-24 22:33:29 +02:00
#if PIN_EXISTS(STAT_LED_RED)
OUT_WRITE(STAT_LED_RED_PIN, LOW); // turn it off
2016-09-12 03:21:54 +02:00
#endif
2016-09-24 22:33:29 +02:00
#if PIN_EXISTS(STAT_LED_BLUE)
OUT_WRITE(STAT_LED_BLUE_PIN, LOW); // turn it off
2016-09-12 03:21:54 +02:00
#endif
2017-11-28 06:02:44 +01:00
#if HAS_COLOR_LEDS
leds.setup();
#endif
2017-04-14 23:54:53 +02:00
#if ENABLED(RGB_LED) || ENABLED(RGBW_LED)
2017-03-18 16:17:00 +01:00
SET_OUTPUT(RGB_LED_R_PIN);
SET_OUTPUT(RGB_LED_G_PIN);
SET_OUTPUT(RGB_LED_B_PIN);
2017-04-14 23:54:53 +02:00
#if ENABLED(RGBW_LED)
SET_OUTPUT(RGB_LED_W_PIN);
#endif
2016-11-30 02:51:13 +01:00
#endif
#if ENABLED(MK2_MULTIPLEXER)
SET_OUTPUT(E_MUX0_PIN);
SET_OUTPUT(E_MUX1_PIN);
SET_OUTPUT(E_MUX2_PIN);
#endif
#if HAS_FANMUX
fanmux_init();
#endif
2016-09-12 03:21:54 +02:00
lcd_init();
lcd_reset_status();
2017-07-02 07:35:41 +02:00
2016-09-12 03:21:54 +02:00
#if ENABLED(SHOW_BOOTSCREEN)
lcd_bootscreen();
2016-09-12 03:21:54 +02:00
#endif
#if ENABLED(MIXING_EXTRUDER) && MIXING_VIRTUAL_TOOLS > 1
// Virtual Tools 0, 1, 2, 3 = Filament 1, 2, 3, 4, etc.
for (uint8_t t = 0; t < MIXING_VIRTUAL_TOOLS && t < MIXING_STEPPERS; t++)
2016-09-12 03:21:54 +02:00
for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
mixing_virtual_tool_mix[t][i] = (t == i) ? 1.0 : 0.0;
// Remaining virtual tools are 100% filament 1
#if MIXING_STEPPERS < MIXING_VIRTUAL_TOOLS
for (uint8_t t = MIXING_STEPPERS; t < MIXING_VIRTUAL_TOOLS; t++)
for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
mixing_virtual_tool_mix[t][i] = (i == 0) ? 1.0 : 0.0;
#endif
// Initialize mixing to tool 0 color
for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
mixing_factor[i] = mixing_virtual_tool_mix[0][i];
2016-09-12 03:21:54 +02:00
#endif
#if ENABLED(BLTOUCH)
2017-05-01 18:09:39 +02:00
// Make sure any BLTouch error condition is cleared
bltouch_command(BLTOUCH_RESET);
set_bltouch_deployed(false);
#endif
#if ENABLED(I2C_POSITION_ENCODERS)
I2CPEM.init();
#endif
2016-09-12 03:21:54 +02:00
#if ENABLED(EXPERIMENTAL_I2CBUS) && I2C_SLAVE_ADDRESS > 0
i2c.onReceive(i2c_on_receive);
i2c.onRequest(i2c_on_request);
#endif
#if DO_SWITCH_EXTRUDER
move_extruder_servo(0); // Initialize extruder servo
#endif
#if ENABLED(SWITCHING_NOZZLE)
move_nozzle_servo(0); // Initialize nozzle servo
#endif
#if ENABLED(PARKING_EXTRUDER)
#if ENABLED(PARKING_EXTRUDER_SOLENOIDS_INVERT)
pe_activate_magnet(0);
pe_activate_magnet(1);
#else
pe_deactivate_magnet(0);
pe_deactivate_magnet(1);
#endif
#endif
2018-03-09 00:36:01 +01:00
2018-04-21 23:12:04 +02:00
#if ENABLED(POWER_LOSS_RECOVERY)
check_print_job_recovery();
2018-04-21 23:12:04 +02:00
#endif
2018-03-09 00:36:01 +01:00
#if ENABLED(USE_WATCHDOG)
watchdog_init();
#endif
2018-09-09 04:17:02 +02:00
#if ENABLED(HANGPRINTER)
enable_A();
enable_B();
enable_C();
enable_D();
#endif
2018-09-12 10:48:27 +02:00
#if ENABLED(SDSUPPORT) && DISABLED(ULTRA_LCD)
card.beginautostart();
#endif
2016-09-12 03:21:54 +02:00
}
/**
* The main Marlin program loop
*
* - Abort SD printing if flagged
2016-09-12 03:21:54 +02:00
* - Save or log commands to SD
* - Process available commands (if not saving)
* - Call heater manager
* - Call inactivity manager
* - Call endstop manager
* - Call LCD update
*/
void loop() {
#if ENABLED(SDSUPPORT)
2018-05-01 06:38:02 +02:00
card.checkautostart();
#if ENABLED(ULTIPANEL)
if (abort_sd_printing) {
abort_sd_printing = false;
card.stopSDPrint(
#if SD_RESORT
true
#endif
);
clear_command_queue();
quickstop_stepper();
print_job_timer.stop();
thermalManager.disable_all_heaters();
#if FAN_COUNT > 0
for (uint8_t i = 0; i < FAN_COUNT; i++) fanSpeeds[i] = 0;
#endif
wait_for_heatup = false;
#if ENABLED(POWER_LOSS_RECOVERY)
card.removeJobRecoveryFile();
#endif
}
#endif
#endif // SDSUPPORT
if (commands_in_queue < BUFSIZE) get_available_commands();
2016-09-12 03:21:54 +02:00
if (commands_in_queue) {
#if ENABLED(SDSUPPORT)
if (card.saving) {
char* command = command_queue[cmd_queue_index_r];
if (strstr_P(command, PSTR("M29"))) {
// M29 closes the file
card.closefile();
SERIAL_PROTOCOLLNPGM(MSG_FILE_SAVED);
2018-05-24 12:47:55 +02:00
#if USE_MARLINSERIAL
#if ENABLED(SERIAL_STATS_DROPPED_RX)
SERIAL_ECHOLNPAIR("Dropped bytes: ", customizedSerial.dropped());
#endif
#if ENABLED(SERIAL_STATS_MAX_RX_QUEUED)
SERIAL_ECHOLNPAIR("Max RX Queue Size: ", customizedSerial.rxMaxEnqueued());
#endif
#endif
2016-09-12 03:21:54 +02:00
ok_to_send();
}
else {
// Write the string from the read buffer to SD
card.write_command(command);
if (card.logging)
process_next_command(); // The card is saving because it's logging
else
ok_to_send();
}
}
2018-04-21 23:12:04 +02:00
else {
2016-09-12 03:21:54 +02:00
process_next_command();
2018-04-21 23:12:04 +02:00
#if ENABLED(POWER_LOSS_RECOVERY)
if (card.cardOK && card.sdprinting) save_job_recovery_info();
#endif
}
2016-09-12 03:21:54 +02:00
#else
process_next_command();
#endif // SDSUPPORT
// The queue may be reset by a command handler or by code invoked by idle() within a handler
if (commands_in_queue) {
--commands_in_queue;
2017-05-05 09:57:22 +02:00
if (++cmd_queue_index_r >= BUFSIZE) cmd_queue_index_r = 0;
2016-09-12 03:21:54 +02:00
}
}
endstops.event_handler();
2016-09-12 03:21:54 +02:00
idle();
}